--- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Thu Nov 08 22:02:07 2018 +0100
+++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Thu Nov 08 22:29:09 2018 +0100
@@ -229,7 +229,7 @@
proof -
obtain A' where "A ** A' = mat 1" and "A' ** A = mat 1"
using assms unfolding invertible_def by auto
- with `k \<noteq> 0`
+ with \<open>k \<noteq> 0\<close>
have "(k *\<^sub>R A) ** ((1/k) *\<^sub>R A') = mat 1" "((1/k) *\<^sub>R A') ** (k *\<^sub>R A) = mat 1"
by (simp_all add: assms matrix_scalar_ac)
thus "invertible (k *\<^sub>R A)"