src/ZF/ex/misc.thy
changeset 11399 1605aeb98fd5
child 13339 0f89104dd377
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/misc.thy	Fri Jul 06 16:04:32 2001 +0200
@@ -0,0 +1,149 @@
+(*  Title:      ZF/ex/misc.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Miscellaneous examples for Zermelo-Fraenkel Set Theory 
+Composition of homomorphisms, Pastre's examples, ...
+*)
+
+theory misc = Main:
+
+
+
+(*These two are cited in Benzmueller and Kohlhase's system description of LEO,
+  CADE-15, 1998 (page 139-143) as theorems LEO could not prove.*)
+lemma "(X = Y Un Z) <-> (Y \<subseteq> X & Z \<subseteq> X & (\<forall>V. Y \<subseteq> V & Z \<subseteq> V --> X \<subseteq> V))"
+by (blast intro!: equalityI)
+
+(*the dual of the previous one*)
+lemma "(X = Y Int Z) <-> (X \<subseteq> Y & X \<subseteq> Z & (\<forall>V. V \<subseteq> Y & V \<subseteq> Z --> V \<subseteq> X))"
+by (blast intro!: equalityI)
+
+(*trivial example of term synthesis: apparently hard for some provers!*)
+lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
+by blast
+
+(*Nice Blast_tac benchmark.  Proved in 0.3s; old tactics can't manage it!*)
+lemma "\<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y ==> \<exists>z. S \<subseteq> {z}"
+by blast
+
+(*variant of the benchmark above*)
+lemma "\<forall>x \<in> S. Union(S) \<subseteq> x ==> \<exists>z. S \<subseteq> {z}"
+by blast
+
+(*Example 12 (credited to Peter Andrews) from
+ W. Bledsoe.  A Maximal Method for Set Variables in Automatic Theorem-proving.
+ In: J. Hayes and D. Michie and L. Mikulich, eds.  Machine Intelligence 9.
+ Ellis Horwood, 53-100 (1979). *)
+lemma "(\<forall>F. {x} \<in> F --> {y} \<in> F) --> (\<forall>A. x \<in> A --> y \<in> A)"
+by best
+
+
+(*** Composition of homomorphisms is a homomorphism ***)
+
+(*Given as a challenge problem in
+  R. Boyer et al.,
+  Set Theory in First-Order Logic: Clauses for G\"odel's Axioms,
+  JAR 2 (1986), 287-327 
+*)
+
+(*collecting the relevant lemmas*)
+declare comp_fun [simp] SigmaI [simp] apply_funtype [simp]
+
+(*Force helps prove conditions of rewrites such as comp_fun_apply, since
+  rewriting does not instantiate Vars.*)
+lemma "(\<forall>A f B g. hom(A,f,B,g) =  
+           {H \<in> A->B. f \<in> A*A->A & g \<in> B*B->B &  
+                     (\<forall>x \<in> A. \<forall>y \<in> A. H`(f`<x,y>) = g`<H`x,H`y>)}) -->  
+       J \<in> hom(A,f,B,g) & K \<in> hom(B,g,C,h) -->   
+       (K O J) \<in> hom(A,f,C,h)"
+by force
+
+(*Another version , with meta-level rewriting*)
+lemma "(!! A f B g. hom(A,f,B,g) ==  
+           {H \<in> A->B. f \<in> A*A->A & g \<in> B*B->B &  
+                     (\<forall>x \<in> A. \<forall>y \<in> A. H`(f`<x,y>) = g`<H`x,H`y>)}) 
+       ==> J \<in> hom(A,f,B,g) & K \<in> hom(B,g,C,h) --> (K O J) \<in> hom(A,f,C,h)"
+by force
+
+
+
+(** A characterization of functions suggested by Tobias Nipkow **)
+
+lemma "r \<in> domain(r)->B  <->  r \<subseteq> domain(r)*B & (\<forall>X. r `` (r -`` X) \<subseteq> X)"
+apply (unfold Pi_def function_def)
+apply best
+done
+
+(**** From D Pastre.  Automatic theorem proving in set theory. 
+         Artificial Intelligence, 10:1--27, 1978.
+
+      Previously, these were done using ML code, but blast manages fine.
+****)
+
+lemmas compIs [intro] = comp_surj comp_inj comp_fun [intro]
+lemmas compDs [dest] =  comp_mem_injD1 comp_mem_surjD1 
+                        comp_mem_injD2 comp_mem_surjD2
+
+lemma pastre1: 
+    "[| (h O g O f) \<in> inj(A,A);           
+        (f O h O g) \<in> surj(B,B);          
+        (g O f O h) \<in> surj(C,C);          
+        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)";
+by (unfold bij_def, blast)
+
+lemma pastre3: 
+    "[| (h O g O f) \<in> surj(A,A);          
+        (f O h O g) \<in> surj(B,B);          
+        (g O f O h) \<in> inj(C,C);           
+        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)"
+by (unfold bij_def, blast)
+
+lemma pastre4: 
+    "[| (h O g O f) \<in> surj(A,A);          
+        (f O h O g) \<in> inj(B,B);           
+        (g O f O h) \<in> inj(C,C);           
+        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)"
+by (unfold bij_def, blast)
+
+lemma pastre5: 
+    "[| (h O g O f) \<in> inj(A,A);           
+        (f O h O g) \<in> surj(B,B);          
+        (g O f O h) \<in> inj(C,C);           
+        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)"
+by (unfold bij_def, blast)
+
+lemma pastre6: 
+    "[| (h O g O f) \<in> inj(A,A);           
+        (f O h O g) \<in> inj(B,B);           
+        (g O f O h) \<in> surj(C,C);          
+        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)"
+by (unfold bij_def, blast)
+
+
+(** Yet another example... **)
+
+lemma Pow_sum_bij:
+    "(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>)  
+     \<in> bij(Pow(A+B), Pow(A)*Pow(B))"
+apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} Un {Inr (y). y \<in> Y}" 
+       in lam_bijective)
+apply force+
+done
+
+(*As a special case, we have  bij(Pow(A*B), A -> Pow B)  *)
+lemma Pow_Sigma_bij:
+    "(\<lambda>r \<in> Pow(Sigma(A,B)). \<lambda>x \<in> A. r``{x})  
+     \<in> bij(Pow(Sigma(A,B)), \<Pi>x \<in> A. Pow(B(x)))"
+apply (rule_tac d = "%f. \<Union>x \<in> A. \<Union>y \<in> f`x. {<x,y>}" in lam_bijective)
+apply (blast intro: lam_type)
+apply (blast dest: apply_type)
+apply simp_all
+apply fast (*strange, but blast can't do it*)
+apply (rule fun_extension)
+apply auto
+by blast
+
+end
+