src/HOL/Hyperreal/Ln.thy
changeset 16959 17a0c4d79b4c
child 16963 32626fb8ae49
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Hyperreal/Ln.thy	Fri Jul 29 19:47:19 2005 +0200
@@ -0,0 +1,480 @@
+(*  Title:      Ln.thy
+    Author:     Jeremy Avigad
+*)
+
+header {* Properties of ln *}
+
+theory Ln
+
+imports Transcendental
+begin
+
+lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n. 
+  inverse(real (fact (n+2))) * (x ^ (n+2)))"
+proof -
+  have "exp x = suminf (%n. inverse(real (fact n)) * (x ^ n))"
+    by (unfold exp_def, simp)
+  also from summable_exp have "... = (SUM n : {0..<2}. 
+      inverse(real (fact n)) * (x ^ n)) + suminf (%n.
+      inverse(real (fact (n+2))) * (x ^ (n+2)))" (is "_ = ?a + _")
+    by (rule suminf_split_initial_segment)
+  also have "?a = 1 + x"
+    by (simp add: numerals)
+  finally show ?thesis .
+qed
+
+lemma exp_tail_after_first_two_terms_summable: 
+  "summable (%n. inverse(real (fact (n+2))) * (x ^ (n+2)))"
+proof -
+  note summable_exp
+  thus ?thesis
+    by (frule summable_ignore_initial_segment)
+qed
+
+lemma aux1: assumes a: "0 <= x" and b: "x <= 1"
+    shows "inverse (real (fact (n + 2))) * x ^ (n + 2) <= (x^2/2) * ((1/2)^n)"
+proof (induct n)
+  show "inverse (real (fact (0 + 2))) * x ^ (0 + 2) <= 
+      x ^ 2 / 2 * (1 / 2) ^ 0"
+    apply (simp add: power2_eq_square)
+    apply (subgoal_tac "real (Suc (Suc 0)) = 2")
+    apply (erule ssubst)
+    apply simp
+    apply simp
+    done
+next
+  fix n
+  assume c: "inverse (real (fact (n + 2))) * x ^ (n + 2)
+       <= x ^ 2 / 2 * (1 / 2) ^ n"
+  show "inverse (real (fact (Suc n + 2))) * x ^ (Suc n + 2)
+           <= x ^ 2 / 2 * (1 / 2) ^ Suc n"
+  proof -
+    have "inverse(real (fact (Suc n + 2))) <= 
+        (1 / 2) *inverse (real (fact (n+2)))"
+    proof -
+      have "Suc n + 2 = Suc (n + 2)" by simp
+      then have "fact (Suc n + 2) = Suc (n + 2) * fact (n + 2)" 
+        by simp
+      then have "real(fact (Suc n + 2)) = real(Suc (n + 2) * fact (n + 2))" 
+        apply (rule subst)
+        apply (rule refl)
+        done
+      also have "... = real(Suc (n + 2)) * real(fact (n + 2))"
+        by (rule real_of_nat_mult)
+      finally have "real (fact (Suc n + 2)) = 
+         real (Suc (n + 2)) * real (fact (n + 2))" .
+      then have "inverse(real (fact (Suc n + 2))) = 
+         inverse(real (Suc (n + 2))) * inverse(real (fact (n + 2)))"
+        apply (rule ssubst)
+        apply (rule inverse_mult_distrib)
+        done
+      also have "... <= (1/2) * inverse(real (fact (n + 2)))"
+        apply (rule mult_right_mono)
+        apply (subst inverse_eq_divide)
+        apply simp
+        apply (rule inv_real_of_nat_fact_ge_zero)
+        done
+      finally show ?thesis .
+    qed
+    moreover have "x ^ (Suc n + 2) <= x ^ (n + 2)"
+      apply (simp add: mult_compare_simps)
+      apply (simp add: prems)
+      apply (subgoal_tac "0 <= x * (x * x^n)")
+      apply force
+      apply (rule mult_nonneg_nonneg, rule a)+
+      apply (rule zero_le_power, rule a)
+      done
+    ultimately have "inverse (real (fact (Suc n + 2))) *  x ^ (Suc n + 2) <=
+        (1 / 2 * inverse (real (fact (n + 2)))) * x ^ (n + 2)"
+      apply (rule mult_mono)
+      apply (rule mult_nonneg_nonneg)
+      apply simp
+      apply (subst inverse_nonnegative_iff_nonnegative)
+      apply (rule real_of_nat_fact_ge_zero)
+      apply (rule zero_le_power)
+      apply assumption
+      done
+    also have "... = 1 / 2 * (inverse (real (fact (n + 2))) * x ^ (n + 2))"
+      by simp
+    also have "... <= 1 / 2 * (x ^ 2 / 2 * (1 / 2) ^ n)"
+      apply (rule mult_left_mono)
+      apply (rule prems)
+      apply simp
+      done
+    also have "... = x ^ 2 / 2 * (1 / 2 * (1 / 2) ^ n)"
+      by auto
+    also have "(1::real) / 2 * (1 / 2) ^ n = (1 / 2) ^ (Suc n)"
+      by (rule realpow_Suc [THEN sym])
+    finally show ?thesis .
+  qed
+qed
+
+lemma aux2: "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums x^2"
+proof -
+  have "(%n. (1 / 2)^n) sums (1 / (1 - (1/2)))"
+    apply (rule geometric_sums)
+    by (simp add: abs_interval_iff)
+  also have "(1::real) / (1 - 1/2) = 2"
+    by simp
+  finally have "(%n. (1 / 2)^n) sums 2" .
+  then have "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums (x^2 / 2 * 2)"
+    by (rule sums_mult)
+  also have "x^2 / 2 * 2 = x^2"
+    by simp
+  finally show ?thesis .
+qed
+
+lemma exp_bound: "0 <= x ==> x <= 1 ==> exp x <= 1 + x + x^2"
+proof -
+  assume a: "0 <= x"
+  assume b: "x <= 1"
+  have c: "exp x = 1 + x + suminf (%n. inverse(real (fact (n+2))) * 
+      (x ^ (n+2)))"
+    by (rule exp_first_two_terms)
+  moreover have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <= x^2"
+  proof -
+    have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <=
+        suminf (%n. (x^2/2) * ((1/2)^n))"
+      apply (rule summable_le)
+      apply (auto simp only: aux1 prems)
+      apply (rule exp_tail_after_first_two_terms_summable)
+      by (rule sums_summable, rule aux2)  
+    also have "... = x^2"
+      by (rule sums_unique [THEN sym], rule aux2)
+    finally show ?thesis .
+  qed
+  ultimately show ?thesis
+    by auto
+qed
+
+lemma aux3: "(0::real) <= x ==> (1 + x + x^2)/(1 + x^2) <= 1 + x"
+  apply (subst pos_divide_le_eq)
+  apply (simp add: zero_compare_simps)
+  apply (simp add: ring_eq_simps zero_compare_simps)
+done
+
+lemma aux4: "0 <= x ==> x <= 1 ==> exp (x - x^2) <= 1 + x" 
+proof -
+  assume a: "0 <= x" and b: "x <= 1"
+  have "exp (x - x^2) = exp x / exp (x^2)"
+    by (rule exp_diff)
+  also have "... <= (1 + x + x^2) / exp (x ^2)"
+    apply (rule divide_right_mono) 
+    apply (rule exp_bound)
+    apply (rule a, rule b)
+    apply simp
+    done
+  also have "... <= (1 + x + x^2) / (1 + x^2)"
+    apply (rule divide_left_mono)
+    apply auto
+    apply (rule add_nonneg_nonneg)
+    apply (insert prems, auto)
+    apply (rule mult_pos_pos)
+    apply auto
+    apply (rule add_pos_nonneg)
+    apply auto
+    done
+  also from a have "... <= 1 + x"
+    by (rule aux3)
+  finally show ?thesis .
+qed
+
+lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==> 
+    x - x^2 <= ln (1 + x)"
+proof -
+  assume a: "0 <= x" and b: "x <= 1"
+  then have "exp (x - x^2) <= 1 + x"
+    by (rule aux4)
+  also have "... = exp (ln (1 + x))"
+  proof -
+    from a have "0 < 1 + x" by auto
+    thus ?thesis
+      by (auto simp only: exp_ln_iff [THEN sym])
+  qed
+  finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" .
+  thus ?thesis by (auto simp only: exp_le_cancel_iff)
+qed
+
+lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x"
+proof -
+  assume a: "0 <= (x::real)" and b: "x < 1"
+  have "(1 - x) * (1 + x + x^2) = (1 - x^3)"
+    by (simp add: ring_eq_simps power2_eq_square power3_eq_cube)
+  also have "... <= 1"
+    by (auto intro: zero_le_power simp add: a)
+  finally have "(1 - x) * (1 + x + x ^ 2) <= 1" .
+  moreover have "0 < 1 + x + x^2"
+    apply (rule add_pos_nonneg)
+    apply (insert a, auto)
+    done
+  ultimately have "1 - x <= 1 / (1 + x + x^2)"
+    by (elim mult_imp_le_div_pos)
+  also have "... <= 1 / exp x"
+    apply (rule divide_left_mono)
+    apply (rule exp_bound, rule a)
+    apply (insert prems, auto)
+    apply (rule mult_pos_pos)
+    apply (rule add_pos_nonneg)
+    apply auto
+    done
+  also have "... = exp (-x)"
+    by (auto simp add: exp_minus real_divide_def)
+  finally have "1 - x <= exp (- x)" .
+  also have "1 - x = exp (ln (1 - x))"
+  proof -
+    have "0 < 1 - x"
+      by (insert b, auto)
+    thus ?thesis
+      by (auto simp only: exp_ln_iff [THEN sym])
+  qed
+  finally have "exp (ln (1 - x)) <= exp (- x)" .
+  thus ?thesis by (auto simp only: exp_le_cancel_iff)
+qed
+
+lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))"
+proof -
+  assume a: "x < 1"
+  have "ln(1 - x) = - ln(1 / (1 - x))"
+  proof -
+    have "ln(1 - x) = - (- ln (1 - x))"
+      by auto
+    also have "- ln(1 - x) = ln 1 - ln(1 - x)"
+      by simp
+    also have "... = ln(1 / (1 - x))"
+      apply (rule ln_div [THEN sym])
+      by (insert a, auto)
+    finally show ?thesis .
+  qed
+  also have " 1 / (1 - x) = 1 + x / (1 - x)"
+  proof -
+    have "1 / (1 - x) = (1 - x + x) / (1 - x)"
+      by auto
+    also have "... = (1 - x) / (1 - x) + x / (1 - x)"
+      by (rule add_divide_distrib)
+    also have "... = 1 + x / (1-x)"
+      apply (subst add_right_cancel)
+      apply (insert a, simp)
+      done
+    finally show ?thesis .
+  qed
+  finally show ?thesis .
+qed
+
+lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==> 
+    - x - 2 * x^2 <= ln (1 - x)"
+proof -
+  assume a: "0 <= x" and b: "x <= (1 / 2)"
+  from b have c: "x < 1"
+    by auto
+  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
+    by (rule aux5)
+  also have "- (x / (1 - x)) <= ..."
+  proof - 
+    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
+      apply (rule ln_add_one_self_le_self)
+      apply (rule divide_nonneg_pos)
+      by (insert a c, auto) 
+    thus ?thesis
+      by auto
+  qed
+  also have "- (x / (1 - x)) = -x / (1 - x)"
+    by auto
+  finally have d: "- x / (1 - x) <= ln (1 - x)" .
+  have e: "-x - 2 * x^2 <= - x / (1 - x)"
+    apply (rule mult_imp_le_div_pos)
+    apply (insert prems, force)
+    apply (auto simp add: ring_eq_simps power2_eq_square)
+    apply (subgoal_tac "- (x * x) + x * (x * (x * 2)) = x^2 * (2 * x - 1)")
+    apply (erule ssubst)
+    apply (rule mult_nonneg_nonpos)
+    apply auto
+    apply (auto simp add: ring_eq_simps power2_eq_square)
+    done
+  from e d show "- x - 2 * x^2 <= ln (1 - x)"
+    by (rule order_trans)
+qed
+
+lemma exp_ge_add_one_self2: "1 + x <= exp x"
+  apply (case_tac "0 <= x")
+  apply (erule exp_ge_add_one_self)
+  apply (case_tac "x <= -1")
+  apply (subgoal_tac "1 + x <= 0")
+  apply (erule order_trans)
+  apply simp
+  apply simp
+  apply (subgoal_tac "1 + x = exp(ln (1 + x))")
+  apply (erule ssubst)
+  apply (subst exp_le_cancel_iff)
+  apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")
+  apply simp
+  apply (rule ln_one_minus_pos_upper_bound) 
+  apply auto
+  apply (rule sym) 
+  apply (subst exp_ln_iff)
+  apply auto
+done
+
+lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x"
+  apply (subgoal_tac "x = ln (exp x)")
+  apply (erule ssubst)back
+  apply (subst ln_le_cancel_iff)
+  apply auto
+  apply (rule exp_ge_add_one_self2)
+done
+
+lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
+    "0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2"
+proof -
+  assume "0 <= x"
+  assume "x <= 1"
+  have "ln (1 + x) <= x"
+    by (rule ln_add_one_self_le_self)
+  then have "ln (1 + x) - x <= 0" 
+    by simp
+  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
+    by (rule abs_of_nonpos)
+  also have "... = x - ln (1 + x)" 
+    by simp
+  also have "... <= x^2"
+  proof -
+    from prems have "x - x^2 <= ln (1 + x)"
+      by (intro ln_one_plus_pos_lower_bound)
+    thus ?thesis
+      by simp
+  qed
+  finally show ?thesis .
+qed
+
+lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
+    "-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2"
+proof -
+  assume "-(1 / 2) <= x"
+  assume "x <= 0"
+  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" 
+    apply (subst abs_of_nonpos)
+    apply simp
+    apply (rule ln_add_one_self_le_self2)
+    apply (insert prems, auto)
+    done
+  also have "... <= 2 * x^2"
+    apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))")
+    apply (simp add: compare_rls)
+    apply (rule ln_one_minus_pos_lower_bound)
+    apply (insert prems, auto)
+    done 
+  finally show ?thesis .
+qed
+
+lemma abs_ln_one_plus_x_minus_x_bound:
+    "abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2"
+  apply (case_tac "0 <= x")
+  apply (rule order_trans)
+  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
+  apply auto
+  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
+  apply auto
+done
+
+lemma DERIV_ln: "0 < x ==> DERIV ln x :> 1 / x"
+  apply (unfold deriv_def, unfold LIM_def, clarsimp)
+  apply (rule exI)
+  apply (rule conjI)
+  prefer 2
+  apply clarsimp
+  apply (subgoal_tac "(ln (x + xa) + - ln x) / xa + - (1 / x) = 
+      (ln (1 + xa / x) - xa / x) / xa")
+  apply (erule ssubst)
+  apply (subst abs_divide)
+  apply (rule mult_imp_div_pos_less)
+  apply force
+  apply (rule order_le_less_trans)
+  apply (rule abs_ln_one_plus_x_minus_x_bound)
+  apply (subst abs_divide)
+  apply (subst abs_of_pos, assumption)
+  apply (erule mult_imp_div_pos_le)
+  apply (subgoal_tac "abs xa < min (x / 2) (r * x^2 / 2)")
+  apply force
+  apply assumption
+  apply (simp add: power2_eq_square mult_compare_simps)
+  apply (rule mult_imp_div_pos_less)
+  apply (rule mult_pos_pos, assumption, assumption)
+  apply (subgoal_tac "xa * xa = abs xa * abs xa")
+  apply (erule ssubst)
+  apply (subgoal_tac "abs xa * (abs xa * 2) < abs xa * (r * (x * x))")
+  apply (simp only: mult_ac)
+  apply (rule mult_strict_left_mono)
+  apply (erule conjE, assumption)
+  apply force
+  apply simp
+  apply (subst diff_minus [THEN sym])+
+  apply (subst ln_div [THEN sym])
+  apply arith
+  apply (auto simp add: ring_eq_simps add_frac_eq frac_eq_eq 
+    add_divide_distrib power2_eq_square)
+  apply (rule mult_pos_pos, assumption)+
+  apply assumption
+done
+
+lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"  
+proof -
+  assume "exp 1 <= x" and "x <= y"
+  have a: "0 < x" and b: "0 < y"
+    apply (insert prems)
+    apply (subgoal_tac "0 < exp 1")
+    apply arith
+    apply auto
+    apply (subgoal_tac "0 < exp 1")
+    apply arith
+    apply auto
+    done
+  have "x * ln y - x * ln x = x * (ln y - ln x)"
+    by (simp add: ring_eq_simps)
+  also have "... = x * ln(y / x)"
+    apply (subst ln_div)
+    apply (rule b, rule a, rule refl)
+    done
+  also have "y / x = (x + (y - x)) / x"
+    by simp
+  also have "... = 1 + (y - x) / x"
+    apply (simp only: add_divide_distrib)
+    apply (simp add: prems)
+    apply (insert a, arith)
+    done
+  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
+    apply (rule mult_left_mono)
+    apply (rule ln_add_one_self_le_self)
+    apply (rule divide_nonneg_pos)
+    apply (insert prems a, simp_all) 
+    done
+  also have "... = y - x"
+    by (insert a, simp)
+  also have "... = (y - x) * ln (exp 1)"
+    by simp
+  also have "... <= (y - x) * ln x"
+    apply (rule mult_left_mono)
+    apply (subst ln_le_cancel_iff)
+    apply force
+    apply (rule a)
+    apply (rule prems)
+    apply (insert prems, simp)
+    done
+  also have "... = y * ln x - x * ln x"
+    by (rule left_diff_distrib)
+  finally have "x * ln y <= y * ln x"
+    by arith
+  then have "ln y <= (y * ln x) / x"
+    apply (subst pos_le_divide_eq)
+    apply (rule a)
+    apply (simp add: mult_ac)
+    done
+  also have "... = y * (ln x / x)"
+    by simp
+  finally show ?thesis 
+    apply (subst pos_divide_le_eq)
+    apply (rule b)
+    apply (simp add: mult_ac)
+    done
+qed
+
+end
+