--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Induct/Sexp.thy Mon May 08 20:59:30 2000 +0200
@@ -0,0 +1,41 @@
+(* Title: HOL/Induct/Sexp.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1992 University of Cambridge
+
+S-expressions, general binary trees for defining recursive data
+structures by hand.
+*)
+
+Sexp = Univ + Inductive +
+consts
+ sexp :: 'a item set
+
+ sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b,
+ 'a item] => 'b"
+
+ sexp_rec :: "['a item, 'a=>'b, nat=>'b,
+ ['a item, 'a item, 'b, 'b]=>'b] => 'b"
+
+ pred_sexp :: "('a item * 'a item)set"
+
+inductive sexp
+ intrs
+ LeafI "Leaf(a): sexp"
+ NumbI "Numb(i): sexp"
+ SconsI "[| M: sexp; N: sexp |] ==> Scons M N : sexp"
+
+defs
+
+ sexp_case_def
+ "sexp_case c d e M == @ z. (? x. M=Leaf(x) & z=c(x))
+ | (? k. M=Numb(k) & z=d(k))
+ | (? N1 N2. M = Scons N1 N2 & z=e N1 N2)"
+
+ pred_sexp_def
+ "pred_sexp == UN M: sexp. UN N: sexp. {(M, Scons M N), (N, Scons M N)}"
+
+ sexp_rec_def
+ "sexp_rec M c d e == wfrec pred_sexp
+ (%g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2))) M"
+end