--- a/src/HOL/Library/Code_Target_Nat.thy Sun Oct 08 22:28:21 2017 +0200
+++ b/src/HOL/Library/Code_Target_Nat.thy Sun Oct 08 22:28:21 2017 +0200
@@ -95,7 +95,7 @@
lemma [code]:
"Divides.divmod_nat m n = (m div n, m mod n)"
- by (fact divmod_nat_div_mod)
+ by (fact divmod_nat_def)
lemma [code]:
"divmod m n = map_prod nat_of_integer nat_of_integer (divmod m n)"
@@ -130,7 +130,7 @@
proof -
from div_mult_mod_eq have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp
show ?thesis
- by (simp add: Let_def divmod_nat_div_mod of_nat_add [symmetric])
+ by (simp add: Let_def divmod_nat_def of_nat_add [symmetric])
(simp add: * mult.commute of_nat_mult add.commute)
qed