src/HOL/Algebra/Subrings.thy
changeset 69122 1b5178abaf97
parent 68664 bd0df72c16d5
child 70160 8e9100dcde52
--- a/src/HOL/Algebra/Subrings.thy	Thu Oct 04 11:18:39 2018 +0200
+++ b/src/HOL/Algebra/Subrings.thy	Thu Oct 04 15:25:47 2018 +0100
@@ -377,6 +377,8 @@
   assumes "h \<in> ring_hom R S" and "subring K R"
   shows "ring (S \<lparr> carrier := h ` K, one := h \<one>, zero := h \<zero> \<rparr>)"
 proof -
+  have [simp]: "h \<one> = \<one>\<^bsub>S\<^esub>"
+    using assms ring_hom_one by blast
   have "ring (R \<lparr> carrier := K \<rparr>)"
     by (simp add: assms(2) subring_is_ring)
   moreover have "h \<in> ring_hom (R \<lparr> carrier := K \<rparr>) S"