src/HOL/Probability/Discrete_Topology.thy
changeset 50089 1badf63e5d97
child 50245 dea9363887a6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Discrete_Topology.thy	Thu Nov 15 15:50:01 2012 +0100
@@ -0,0 +1,64 @@
+(*  Title:      HOL/Probability/Discrete_Topology.thy
+    Author:     Fabian Immler, TU München
+*)
+
+theory Discrete_Topology
+imports Multivariate_Analysis
+begin
+
+text {* Copy of discrete types with discrete topology. This space is polish. *}
+
+typedef 'a discrete = "UNIV::'a set"
+morphisms of_discrete discrete
+..
+
+instantiation discrete :: (type) topological_space
+begin
+
+definition open_discrete::"'a discrete set \<Rightarrow> bool"
+  where "open_discrete s = True"
+
+instance proof qed (auto simp: open_discrete_def)
+end
+
+instantiation discrete :: (type) metric_space
+begin
+
+definition dist_discrete::"'a discrete \<Rightarrow> 'a discrete \<Rightarrow> real"
+  where "dist_discrete n m = (if n = m then 0 else 1)"
+
+instance proof qed (auto simp: open_discrete_def dist_discrete_def intro: exI[where x=1])
+end
+
+instance discrete :: (type) complete_space
+proof
+  fix X::"nat\<Rightarrow>'a discrete" assume "Cauchy X"
+  hence "\<exists>n. \<forall>m\<ge>n. X n = X m"
+    by (force simp: dist_discrete_def Cauchy_def split: split_if_asm dest:spec[where x=1])
+  then guess n ..
+  thus "convergent X"
+    by (intro convergentI[where L="X n"] tendstoI eventually_sequentiallyI[of n])
+       (simp add: dist_discrete_def)
+qed
+
+instance discrete :: (countable) countable
+proof
+  have "inj (\<lambda>c::'a discrete. to_nat (of_discrete c))"
+    by (simp add: inj_on_def of_discrete_inject)
+  thus "\<exists>f::'a discrete \<Rightarrow> nat. inj f" by blast
+qed
+
+instance discrete :: (countable) enumerable_basis
+proof
+  have "topological_basis (range (\<lambda>n::nat. {from_nat n::'a discrete}))"
+  proof (intro topological_basisI)
+    fix x::"'a discrete" and O' assume "open O'" "x \<in> O'"
+    thus "\<exists>B'\<in>range (\<lambda>n. {from_nat n}). x \<in> B' \<and> B' \<subseteq> O'"
+      by (auto intro: exI[where x="to_nat x"])
+  qed (simp add: open_discrete_def)
+  thus "\<exists>f::nat\<Rightarrow>'a discrete set. topological_basis (range f)" by blast
+qed
+
+instance discrete :: (countable) polish_space ..
+
+end