src/HOL/MicroJava/BV/LBVSpec.thy
changeset 33954 1bc3b688548c
parent 33930 6a973bd43949
child 33955 fff6f11b1f09
--- a/src/HOL/MicroJava/BV/LBVSpec.thy	Wed Dec 02 12:04:07 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,381 +0,0 @@
-(*  Title:      HOL/MicroJava/BV/LBVSpec.thy
-    Author:     Gerwin Klein
-    Copyright   1999 Technische Universitaet Muenchen
-*)
-
-header {* \isaheader{The Lightweight Bytecode Verifier} *}
-
-theory LBVSpec
-imports SemilatAlg Opt
-begin
-
-types
-  's certificate = "'s list"   
-
-consts
-merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's \<Rightarrow> 's"
-primrec
-"merge cert f r T pc []     x = x"
-"merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in 
-                                  if pc'=pc+1 then s' +_f x
-                                  else if s' <=_r (cert!pc') then x
-                                  else T)"
-
-constdefs
-wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow>
-             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
-"wtl_inst cert f r T step pc s \<equiv> merge cert f r T pc (step pc s) (cert!(pc+1))"
-
-wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
-             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
-"wtl_cert cert f r T B step pc s \<equiv>
-  if cert!pc = B then 
-    wtl_inst cert f r T step pc s
-  else
-    if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T"
-
-consts 
-wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
-                  's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
-primrec
-"wtl_inst_list []     cert f r T B step pc s = s"
-"wtl_inst_list (i#is) cert f r T B step pc s = 
-    (let s' = wtl_cert cert f r T B step pc s in
-      if s' = T \<or> s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')"
-
-constdefs
-  cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool"
-  "cert_ok cert n T B A \<equiv> (\<forall>i < n. cert!i \<in> A \<and> cert!i \<noteq> T) \<and> (cert!n = B)"
-
-constdefs
-  bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool"
-  "bottom r B \<equiv> \<forall>x. B <=_r x"
-
-
-locale lbv = Semilat +
-  fixes T :: "'a" ("\<top>") 
-  fixes B :: "'a" ("\<bottom>") 
-  fixes step :: "'a step_type" 
-  assumes top: "top r \<top>"
-  assumes T_A: "\<top> \<in> A"
-  assumes bot: "bottom r \<bottom>" 
-  assumes B_A: "\<bottom> \<in> A"
-
-  fixes merge :: "'a certificate \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a"
-  defines mrg_def: "merge cert \<equiv> LBVSpec.merge cert f r \<top>"
-
-  fixes wti :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
-  defines wti_def: "wti cert \<equiv> wtl_inst cert f r \<top> step"
- 
-  fixes wtc :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
-  defines wtc_def: "wtc cert \<equiv> wtl_cert cert f r \<top> \<bottom> step"
-
-  fixes wtl :: "'b list \<Rightarrow> 'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
-  defines wtl_def: "wtl ins cert \<equiv> wtl_inst_list ins cert f r \<top> \<bottom> step"
-
-
-lemma (in lbv) wti:
-  "wti c pc s \<equiv> merge c pc (step pc s) (c!(pc+1))"
-  by (simp add: wti_def mrg_def wtl_inst_def)
-
-lemma (in lbv) wtc: 
-  "wtc c pc s \<equiv> if c!pc = \<bottom> then wti c pc s else if s <=_r c!pc then wti c pc (c!pc) else \<top>"
-  by (unfold wtc_def wti_def wtl_cert_def)
-
-
-lemma cert_okD1 [intro?]:
-  "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<in> A"
-  by (unfold cert_ok_def) fast
-
-lemma cert_okD2 [intro?]:
-  "cert_ok c n T B A \<Longrightarrow> c!n = B"
-  by (simp add: cert_ok_def)
-
-lemma cert_okD3 [intro?]:
-  "cert_ok c n T B A \<Longrightarrow> B \<in> A \<Longrightarrow> pc < n \<Longrightarrow> c!Suc pc \<in> A"
-  by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2)
-
-lemma cert_okD4 [intro?]:
-  "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<noteq> T"
-  by (simp add: cert_ok_def)
-
-declare Let_def [simp]
-
-section "more semilattice lemmas"
-
-
-lemma (in lbv) sup_top [simp, elim]:
-  assumes x: "x \<in> A" 
-  shows "x +_f \<top> = \<top>"
-proof -
-  from top have "x +_f \<top> <=_r \<top>" ..
-  moreover from x T_A have "\<top> <=_r x +_f \<top>" ..
-  ultimately show ?thesis ..
-qed
-  
-lemma (in lbv) plusplussup_top [simp, elim]:
-  "set xs \<subseteq> A \<Longrightarrow> xs ++_f \<top> = \<top>"
-  by (induct xs) auto
-
-
-
-lemma (in Semilat) pp_ub1':
-  assumes S: "snd`set S \<subseteq> A" 
-  assumes y: "y \<in> A" and ab: "(a, b) \<in> set S" 
-  shows "b <=_r map snd [(p', t') \<leftarrow> S . p' = a] ++_f y"
-proof -
-  from S have "\<forall>(x,y) \<in> set S. y \<in> A" by auto
-  with semilat y ab show ?thesis by - (rule ub1')
-qed 
-
-lemma (in lbv) bottom_le [simp, intro]:
-  "\<bottom> <=_r x"
-  by (insert bot) (simp add: bottom_def)
-
-lemma (in lbv) le_bottom [simp]:
-  "x <=_r \<bottom> = (x = \<bottom>)"
-  by (blast intro: antisym_r)
-
-
-
-section "merge"
-
-lemma (in lbv) merge_Nil [simp]:
-  "merge c pc [] x = x" by (simp add: mrg_def)
-
-lemma (in lbv) merge_Cons [simp]:
-  "merge c pc (l#ls) x = merge c pc ls (if fst l=pc+1 then snd l +_f x
-                                        else if snd l <=_r (c!fst l) then x
-                                        else \<top>)"
-  by (simp add: mrg_def split_beta)
-
-lemma (in lbv) merge_Err [simp]:
-  "snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss \<top> = \<top>"
-  by (induct ss) auto
-
-lemma (in lbv) merge_not_top:
-  "\<And>x. snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss x \<noteq> \<top> \<Longrightarrow> 
-  \<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc'))"
-  (is "\<And>x. ?set ss \<Longrightarrow> ?merge ss x \<Longrightarrow> ?P ss")
-proof (induct ss)
-  show "?P []" by simp
-next
-  fix x ls l
-  assume "?set (l#ls)" then obtain set: "snd`set ls \<subseteq> A" by simp
-  assume merge: "?merge (l#ls) x" 
-  moreover
-  obtain pc' s' where l: "l = (pc',s')" by (cases l)
-  ultimately
-  obtain x' where merge': "?merge ls x'" by simp 
-  assume "\<And>x. ?set ls \<Longrightarrow> ?merge ls x \<Longrightarrow> ?P ls" hence "?P ls" using set merge' .
-  moreover
-  from merge set
-  have "pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc')" by (simp add: l split: split_if_asm)
-  ultimately
-  show "?P (l#ls)" by (simp add: l)
-qed
-
-
-lemma (in lbv) merge_def:
-  shows 
-  "\<And>x. x \<in> A \<Longrightarrow> snd`set ss \<subseteq> A \<Longrightarrow>
-  merge c pc ss x = 
-  (if \<forall>(pc',s') \<in> set ss. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc' then
-    map snd [(p',t') \<leftarrow> ss. p'=pc+1] ++_f x
-  else \<top>)" 
-  (is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?merge ss x = ?if ss x" is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?P ss x")
-proof (induct ss)
-  fix x show "?P [] x" by simp
-next 
-  fix x assume x: "x \<in> A" 
-  fix l::"nat \<times> 'a" and ls  
-  assume "snd`set (l#ls) \<subseteq> A"
-  then obtain l: "snd l \<in> A" and ls: "snd`set ls \<subseteq> A" by auto
-  assume "\<And>x. x \<in> A \<Longrightarrow> snd`set ls \<subseteq> A \<Longrightarrow> ?P ls x" 
-  hence IH: "\<And>x. x \<in> A \<Longrightarrow> ?P ls x" using ls by iprover
-  obtain pc' s' where [simp]: "l = (pc',s')" by (cases l)
-  hence "?merge (l#ls) x = ?merge ls 
-    (if pc'=pc+1 then s' +_f x else if s' <=_r c!pc' then x else \<top>)"
-    (is "?merge (l#ls) x = ?merge ls ?if'")
-    by simp 
-  also have "\<dots> = ?if ls ?if'" 
-  proof -
-    from l have "s' \<in> A" by simp
-    with x have "s' +_f x \<in> A" by simp
-    with x T_A have "?if' \<in> A" by auto
-    hence "?P ls ?if'" by (rule IH) thus ?thesis by simp
-  qed
-  also have "\<dots> = ?if (l#ls) x"
-    proof (cases "\<forall>(pc', s')\<in>set (l#ls). pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'")
-      case True
-      hence "\<forall>(pc', s')\<in>set ls. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'" by auto
-      moreover
-      from True have 
-        "map snd [(p',t')\<leftarrow>ls . p'=pc+1] ++_f ?if' = 
-        (map snd [(p',t')\<leftarrow>l#ls . p'=pc+1] ++_f x)"
-        by simp
-      ultimately
-      show ?thesis using True by simp
-    next
-      case False 
-      moreover
-      from ls have "set (map snd [(p', t')\<leftarrow>ls . p' = Suc pc]) \<subseteq> A" by auto
-      ultimately show ?thesis by auto
-    qed
-  finally show "?P (l#ls) x" .
-qed
-
-lemma (in lbv) merge_not_top_s:
-  assumes x:  "x \<in> A" and ss: "snd`set ss \<subseteq> A"
-  assumes m:  "merge c pc ss x \<noteq> \<top>"
-  shows "merge c pc ss x = (map snd [(p',t') \<leftarrow> ss. p'=pc+1] ++_f x)"
-proof -
-  from ss m have "\<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r c!pc')" 
-    by (rule merge_not_top)
-  with x ss m show ?thesis by - (drule merge_def, auto split: split_if_asm)
-qed
-
-section "wtl-inst-list"
-
-lemmas [iff] = not_Err_eq
-
-lemma (in lbv) wtl_Nil [simp]: "wtl [] c pc s = s" 
-  by (simp add: wtl_def)
-
-lemma (in lbv) wtl_Cons [simp]: 
-  "wtl (i#is) c pc s = 
-  (let s' = wtc c pc s in if s' = \<top> \<or> s = \<top> then \<top> else wtl is c (pc+1) s')"
-  by (simp add: wtl_def wtc_def)
-
-lemma (in lbv) wtl_Cons_not_top:
-  "wtl (i#is) c pc s \<noteq> \<top> = 
-  (wtc c pc s \<noteq> \<top> \<and> s \<noteq> T \<and> wtl is c (pc+1) (wtc c pc s) \<noteq> \<top>)"
-  by (auto simp del: split_paired_Ex)
-
-lemma (in lbv) wtl_top [simp]:  "wtl ls c pc \<top> = \<top>"
-  by (cases ls) auto
-
-lemma (in lbv) wtl_not_top:
-  "wtl ls c pc s \<noteq> \<top> \<Longrightarrow> s \<noteq> \<top>"
-  by (cases "s=\<top>") auto
-
-lemma (in lbv) wtl_append [simp]:
-  "\<And>pc s. wtl (a@b) c pc s = wtl b c (pc+length a) (wtl a c pc s)"
-  by (induct a) auto
-
-lemma (in lbv) wtl_take:
-  "wtl is c pc s \<noteq> \<top> \<Longrightarrow> wtl (take pc' is) c pc s \<noteq> \<top>"
-  (is "?wtl is \<noteq> _ \<Longrightarrow> _")
-proof -
-  assume "?wtl is \<noteq> \<top>"
-  hence "?wtl (take pc' is @ drop pc' is) \<noteq> \<top>" by simp  
-  thus ?thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id)
-qed
-
-lemma take_Suc:
-  "\<forall>n. n < length l \<longrightarrow> take (Suc n) l = (take n l)@[l!n]" (is "?P l")
-proof (induct l)
-  show "?P []" by simp
-next
-  fix x xs assume IH: "?P xs"  
-  show "?P (x#xs)"
-  proof (intro strip)
-    fix n assume "n < length (x#xs)"
-    with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]" 
-      by (cases n, auto)
-  qed
-qed
-
-lemma (in lbv) wtl_Suc:
-  assumes suc: "pc+1 < length is"
-  assumes wtl: "wtl (take pc is) c 0 s \<noteq> \<top>"
-  shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)"
-proof -
-  from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc)
-  with suc wtl show ?thesis by (simp add: min_max.inf_absorb2)
-qed
-
-lemma (in lbv) wtl_all:
-  assumes all: "wtl is c 0 s \<noteq> \<top>" (is "?wtl is \<noteq> _") 
-  assumes pc:  "pc < length is"
-  shows  "wtc c pc (wtl (take pc is) c 0 s) \<noteq> \<top>"
-proof -
-  from pc have "0 < length (drop pc is)" by simp
-  then  obtain i r where Cons: "drop pc is = i#r" 
-    by (auto simp add: neq_Nil_conv simp del: length_drop drop_eq_Nil)
-  hence "i#r = drop pc is" ..
-  with all have take: "?wtl (take pc is@i#r) \<noteq> \<top>" by simp 
-  from pc have "is!pc = drop pc is ! 0" by simp
-  with Cons have "is!pc = i" by simp
-  with take pc show ?thesis by (auto simp add: min_max.inf_absorb2)
-qed
-
-section "preserves-type"
-
-lemma (in lbv) merge_pres:
-  assumes s0: "snd`set ss \<subseteq> A" and x: "x \<in> A"
-  shows "merge c pc ss x \<in> A"
-proof -
-  from s0 have "set (map snd [(p', t')\<leftarrow>ss . p'=pc+1]) \<subseteq> A" by auto
-  with x  have "(map snd [(p', t')\<leftarrow>ss . p'=pc+1] ++_f x) \<in> A"
-    by (auto intro!: plusplus_closed semilat)
-  with s0 x show ?thesis by (simp add: merge_def T_A)
-qed
-  
-
-lemma pres_typeD2:
-  "pres_type step n A \<Longrightarrow> s \<in> A \<Longrightarrow> p < n \<Longrightarrow> snd`set (step p s) \<subseteq> A"
-  by auto (drule pres_typeD)
-
-
-lemma (in lbv) wti_pres [intro?]:
-  assumes pres: "pres_type step n A" 
-  assumes cert: "c!(pc+1) \<in> A"
-  assumes s_pc: "s \<in> A" "pc < n"
-  shows "wti c pc s \<in> A"
-proof -
-  from pres s_pc have "snd`set (step pc s) \<subseteq> A" by (rule pres_typeD2)
-  with cert show ?thesis by (simp add: wti merge_pres)
-qed
-
-
-lemma (in lbv) wtc_pres:
-  assumes pres: "pres_type step n A"
-  assumes cert: "c!pc \<in> A" and cert': "c!(pc+1) \<in> A"
-  assumes s: "s \<in> A" and pc: "pc < n"
-  shows "wtc c pc s \<in> A"
-proof -
-  have "wti c pc s \<in> A" using pres cert' s pc ..
-  moreover have "wti c pc (c!pc) \<in> A" using pres cert' cert pc ..
-  ultimately show ?thesis using T_A by (simp add: wtc) 
-qed
-
-
-lemma (in lbv) wtl_pres:
-  assumes pres: "pres_type step (length is) A"
-  assumes cert: "cert_ok c (length is) \<top> \<bottom> A"
-  assumes s:    "s \<in> A" 
-  assumes all:  "wtl is c 0 s \<noteq> \<top>"
-  shows "pc < length is \<Longrightarrow> wtl (take pc is) c 0 s \<in> A"
-  (is "?len pc \<Longrightarrow> ?wtl pc \<in> A")
-proof (induct pc)
-  from s show "?wtl 0 \<in> A" by simp
-next
-  fix n assume IH: "Suc n < length is"
-  then have n: "n < length is" by simp  
-  from IH have n1: "n+1 < length is" by simp
-  assume prem: "n < length is \<Longrightarrow> ?wtl n \<in> A"
-  have "wtc c n (?wtl n) \<in> A"
-  using pres _ _ _ n
-  proof (rule wtc_pres)
-    from prem n show "?wtl n \<in> A" .
-    from cert n show "c!n \<in> A" by (rule cert_okD1)
-    from cert n1 show "c!(n+1) \<in> A" by (rule cert_okD1)
-  qed
-  also
-  from all n have "?wtl n \<noteq> \<top>" by - (rule wtl_take)
-  with n1 have "wtc c n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric])
-  finally  show "?wtl (Suc n) \<in> A" by simp
-qed
-
-end