src/HOL/MicroJava/DFA/Typing_Framework_err.thy
changeset 33954 1bc3b688548c
child 35416 d8d7d1b785af
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/MicroJava/DFA/Typing_Framework_err.thy	Tue Nov 24 14:37:23 2009 +0100
@@ -0,0 +1,253 @@
+(*  Title:      HOL/MicroJava/BV/Typing_Framework_err.thy
+    Author:     Gerwin Klein
+    Copyright   2000 TUM
+*)
+
+header {* \isaheader{Lifting the Typing Framework to err, app, and eff} *}
+
+theory Typing_Framework_err
+imports Typing_Framework SemilatAlg
+begin
+
+constdefs
+
+wt_err_step :: "'s ord \<Rightarrow> 's err step_type \<Rightarrow> 's err list \<Rightarrow> bool"
+"wt_err_step r step ts \<equiv> wt_step (Err.le r) Err step ts"
+
+wt_app_eff :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
+"wt_app_eff r app step ts \<equiv>
+  \<forall>p < size ts. app p (ts!p) \<and> (\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q)"
+
+map_snd :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'c) list"
+"map_snd f \<equiv> map (\<lambda>(x,y). (x, f y))"
+
+error :: "nat \<Rightarrow> (nat \<times> 'a err) list"
+"error n \<equiv> map (\<lambda>x. (x,Err)) [0..<n]"
+
+err_step :: "nat \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's err step_type"
+"err_step n app step p t \<equiv> 
+  case t of 
+    Err   \<Rightarrow> error n
+  | OK t' \<Rightarrow> if app p t' then map_snd OK (step p t') else error n"
+
+app_mono :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
+"app_mono r app n A \<equiv>
+ \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> app p t \<longrightarrow> app p s"
+
+
+lemmas err_step_defs = err_step_def map_snd_def error_def
+
+
+lemma bounded_err_stepD:
+  "bounded (err_step n app step) n \<Longrightarrow> 
+  p < n \<Longrightarrow>  app p a \<Longrightarrow> (q,b) \<in> set (step p a) \<Longrightarrow> 
+  q < n"
+  apply (simp add: bounded_def err_step_def)
+  apply (erule allE, erule impE, assumption)
+  apply (erule_tac x = "OK a" in allE, drule bspec)
+   apply (simp add: map_snd_def)
+   apply fast
+  apply simp
+  done
+
+
+lemma in_map_sndD: "(a,b) \<in> set (map_snd f xs) \<Longrightarrow> \<exists>b'. (a,b') \<in> set xs"
+  apply (induct xs)
+  apply (auto simp add: map_snd_def)
+  done
+
+
+lemma bounded_err_stepI:
+  "\<forall>p. p < n \<longrightarrow> (\<forall>s. ap p s \<longrightarrow> (\<forall>(q,s') \<in> set (step p s). q < n))
+  \<Longrightarrow> bounded (err_step n ap step) n"
+apply (clarsimp simp: bounded_def err_step_def split: err.splits)
+apply (simp add: error_def image_def)
+apply (blast dest: in_map_sndD)
+done
+
+
+lemma bounded_lift:
+  "bounded step n \<Longrightarrow> bounded (err_step n app step) n"
+  apply (unfold bounded_def err_step_def error_def)
+  apply clarify
+  apply (erule allE, erule impE, assumption)
+  apply (case_tac s)
+  apply (auto simp add: map_snd_def split: split_if_asm)
+  done
+
+
+lemma le_list_map_OK [simp]:
+  "\<And>b. map OK a <=[Err.le r] map OK b = (a <=[r] b)"
+  apply (induct a)
+   apply simp
+  apply simp
+  apply (case_tac b)
+   apply simp
+  apply simp
+  done
+
+
+lemma map_snd_lessI:
+  "x <=|r| y \<Longrightarrow> map_snd OK x <=|Err.le r| map_snd OK y"
+  apply (induct x)
+  apply (unfold lesubstep_type_def map_snd_def)
+  apply auto
+  done
+
+
+lemma mono_lift:
+  "order r \<Longrightarrow> app_mono r app n A \<Longrightarrow> bounded (err_step n app step) n \<Longrightarrow>
+  \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> app p t \<longrightarrow> step p s <=|r| step p t \<Longrightarrow>
+  mono (Err.le r) (err_step n app step) n (err A)"
+apply (unfold app_mono_def mono_def err_step_def)
+apply clarify
+apply (case_tac s)
+ apply simp 
+apply simp
+apply (case_tac t)
+ apply simp
+ apply clarify
+ apply (simp add: lesubstep_type_def error_def)
+ apply clarify
+ apply (drule in_map_sndD)
+ apply clarify
+ apply (drule bounded_err_stepD, assumption+)
+ apply (rule exI [of _ Err])
+ apply simp
+apply simp
+apply (erule allE, erule allE, erule allE, erule impE)
+ apply (rule conjI, assumption)
+ apply (rule conjI, assumption)
+ apply assumption
+apply (rule conjI)
+apply clarify
+apply (erule allE, erule allE, erule allE, erule impE)
+ apply (rule conjI, assumption)
+ apply (rule conjI, assumption)
+ apply assumption
+apply (erule impE, assumption)
+apply (rule map_snd_lessI, assumption)
+apply clarify
+apply (simp add: lesubstep_type_def error_def)
+apply clarify
+apply (drule in_map_sndD)
+apply clarify
+apply (drule bounded_err_stepD, assumption+)
+apply (rule exI [of _ Err])
+apply simp
+done
+ 
+lemma in_errorD:
+  "(x,y) \<in> set (error n) \<Longrightarrow> y = Err"
+  by (auto simp add: error_def)
+
+lemma pres_type_lift:
+  "\<forall>s\<in>A. \<forall>p. p < n \<longrightarrow> app p s \<longrightarrow> (\<forall>(q, s')\<in>set (step p s). s' \<in> A) 
+  \<Longrightarrow> pres_type (err_step n app step) n (err A)"  
+apply (unfold pres_type_def err_step_def)
+apply clarify
+apply (case_tac b)
+ apply simp
+apply (case_tac s)
+ apply simp
+ apply (drule in_errorD)
+ apply simp
+apply (simp add: map_snd_def split: split_if_asm)
+ apply fast
+apply (drule in_errorD)
+apply simp
+done
+
+
+
+text {*
+  There used to be a condition here that each instruction must have a
+  successor. This is not needed any more, because the definition of
+  @{term error} trivially ensures that there is a successor for
+  the critical case where @{term app} does not hold. 
+*}
+lemma wt_err_imp_wt_app_eff:
+  assumes wt: "wt_err_step r (err_step (size ts) app step) ts"
+  assumes b:  "bounded (err_step (size ts) app step) (size ts)"
+  shows "wt_app_eff r app step (map ok_val ts)"
+proof (unfold wt_app_eff_def, intro strip, rule conjI)
+  fix p assume "p < size (map ok_val ts)"
+  hence lp: "p < size ts" by simp
+  hence ts: "0 < size ts" by (cases p) auto
+  hence err: "(0,Err) \<in> set (error (size ts))" by (simp add: error_def)
+
+  from wt lp
+  have [intro?]: "\<And>p. p < size ts \<Longrightarrow> ts ! p \<noteq> Err" 
+    by (unfold wt_err_step_def wt_step_def) simp
+
+  show app: "app p (map ok_val ts ! p)"
+  proof (rule ccontr)
+    from wt lp obtain s where
+      OKp:  "ts ! p = OK s" and
+      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
+      by (unfold wt_err_step_def wt_step_def stable_def) 
+         (auto iff: not_Err_eq)
+    assume "\<not> app p (map ok_val ts ! p)"
+    with OKp lp have "\<not> app p s" by simp
+    with OKp have "err_step (size ts) app step p (ts!p) = error (size ts)" 
+      by (simp add: err_step_def)    
+    with err ts obtain q where 
+      "(q,Err) \<in> set (err_step (size ts) app step p (ts!p))" and
+      q: "q < size ts" by auto    
+    with less have "ts!q = Err" by auto
+    moreover from q have "ts!q \<noteq> Err" ..
+    ultimately show False by blast
+  qed
+  
+  show "\<forall>(q,t)\<in>set(step p (map ok_val ts ! p)). t <=_r map ok_val ts ! q" 
+  proof clarify
+    fix q t assume q: "(q,t) \<in> set (step p (map ok_val ts ! p))"
+
+    from wt lp q
+    obtain s where
+      OKp:  "ts ! p = OK s" and
+      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
+      by (unfold wt_err_step_def wt_step_def stable_def) 
+         (auto iff: not_Err_eq)
+
+    from b lp app q have lq: "q < size ts" by (rule bounded_err_stepD)
+    hence "ts!q \<noteq> Err" ..
+    then obtain s' where OKq: "ts ! q = OK s'" by (auto iff: not_Err_eq)
+
+    from lp lq OKp OKq app less q
+    show "t <=_r map ok_val ts ! q"
+      by (auto simp add: err_step_def map_snd_def) 
+  qed
+qed
+
+
+lemma wt_app_eff_imp_wt_err:
+  assumes app_eff: "wt_app_eff r app step ts"
+  assumes bounded: "bounded (err_step (size ts) app step) (size ts)"
+  shows "wt_err_step r (err_step (size ts) app step) (map OK ts)"
+proof (unfold wt_err_step_def wt_step_def, intro strip, rule conjI)
+  fix p assume "p < size (map OK ts)" 
+  hence p: "p < size ts" by simp
+  thus "map OK ts ! p \<noteq> Err" by simp
+  { fix q t
+    assume q: "(q,t) \<in> set (err_step (size ts) app step p (map OK ts ! p))" 
+    with p app_eff obtain 
+      "app p (ts ! p)" "\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q"
+      by (unfold wt_app_eff_def) blast
+    moreover
+    from q p bounded have "q < size ts"
+      by - (rule boundedD)
+    hence "map OK ts ! q = OK (ts!q)" by simp
+    moreover
+    have "p < size ts" by (rule p)
+    moreover note q
+    ultimately     
+    have "t <=_(Err.le r) map OK ts ! q" 
+      by (auto simp add: err_step_def map_snd_def)
+  }
+  thus "stable (Err.le r) (err_step (size ts) app step) (map OK ts) p"
+    by (unfold stable_def) blast
+qed
+
+end
+