--- a/src/HOL/Complete_Partial_Order.thy Sun Sep 01 14:00:05 2013 +0200
+++ b/src/HOL/Complete_Partial_Order.thy Mon Sep 02 16:28:11 2013 +0200
@@ -155,67 +155,72 @@
qed (auto intro: ccpo_Sup_least)
qed
+end
subsection {* Fixpoint induction *}
-definition
- admissible :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
-where
- "admissible P = (\<forall>A. chain (op \<le>) A \<longrightarrow> (\<forall>x\<in>A. P x) \<longrightarrow> P (Sup A))"
+setup {* Sign.map_naming (Name_Space.mandatory_path "ccpo") *}
+
+definition admissible :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+where "admissible lub ord P = (\<forall>A. chain ord A \<longrightarrow> (\<forall>x\<in>A. P x) \<longrightarrow> P (lub A))"
lemma admissibleI:
- assumes "\<And>A. chain (op \<le>) A \<Longrightarrow> \<forall>x\<in>A. P x \<Longrightarrow> P (Sup A)"
- shows "admissible P"
-using assms unfolding admissible_def by fast
+ assumes "\<And>A. chain ord A \<Longrightarrow> \<forall>x\<in>A. P x \<Longrightarrow> P (lub A)"
+ shows "ccpo.admissible lub ord P"
+using assms unfolding ccpo.admissible_def by fast
lemma admissibleD:
- assumes "admissible P"
- assumes "chain (op \<le>) A"
+ assumes "ccpo.admissible lub ord P"
+ assumes "chain ord A"
assumes "\<And>x. x \<in> A \<Longrightarrow> P x"
- shows "P (Sup A)"
-using assms by (auto simp: admissible_def)
+ shows "P (lub A)"
+using assms by (auto simp: ccpo.admissible_def)
-lemma fixp_induct:
- assumes adm: "admissible P"
+setup {* Sign.map_naming Name_Space.parent_path *}
+
+lemma (in ccpo) fixp_induct:
+ assumes adm: "ccpo.admissible Sup (op \<le>) P"
assumes mono: "monotone (op \<le>) (op \<le>) f"
assumes step: "\<And>x. P x \<Longrightarrow> P (f x)"
shows "P (fixp f)"
unfolding fixp_def using adm chain_iterates[OF mono]
-proof (rule admissibleD)
+proof (rule ccpo.admissibleD)
fix x assume "x \<in> iterates f"
thus "P x"
by (induct rule: iterates.induct)
- (auto intro: step admissibleD adm)
+ (auto intro: step ccpo.admissibleD adm)
qed
-lemma admissible_True: "admissible (\<lambda>x. True)"
-unfolding admissible_def by simp
+lemma admissible_True: "ccpo.admissible lub ord (\<lambda>x. True)"
+unfolding ccpo.admissible_def by simp
-lemma admissible_False: "\<not> admissible (\<lambda>x. False)"
-unfolding admissible_def chain_def by simp
+lemma admissible_False: "\<not> ccpo.admissible lub ord (\<lambda>x. False)"
+unfolding ccpo.admissible_def chain_def by simp
-lemma admissible_const: "admissible (\<lambda>x. t) = t"
+lemma admissible_const: "ccpo.admissible lub ord (\<lambda>x. t) = t"
by (cases t, simp_all add: admissible_True admissible_False)
lemma admissible_conj:
- assumes "admissible (\<lambda>x. P x)"
- assumes "admissible (\<lambda>x. Q x)"
- shows "admissible (\<lambda>x. P x \<and> Q x)"
-using assms unfolding admissible_def by simp
+ assumes "ccpo.admissible lub ord (\<lambda>x. P x)"
+ assumes "ccpo.admissible lub ord (\<lambda>x. Q x)"
+ shows "ccpo.admissible lub ord (\<lambda>x. P x \<and> Q x)"
+using assms unfolding ccpo.admissible_def by simp
lemma admissible_all:
- assumes "\<And>y. admissible (\<lambda>x. P x y)"
- shows "admissible (\<lambda>x. \<forall>y. P x y)"
-using assms unfolding admissible_def by fast
+ assumes "\<And>y. ccpo.admissible lub ord (\<lambda>x. P x y)"
+ shows "ccpo.admissible lub ord (\<lambda>x. \<forall>y. P x y)"
+using assms unfolding ccpo.admissible_def by fast
lemma admissible_ball:
- assumes "\<And>y. y \<in> A \<Longrightarrow> admissible (\<lambda>x. P x y)"
- shows "admissible (\<lambda>x. \<forall>y\<in>A. P x y)"
-using assms unfolding admissible_def by fast
+ assumes "\<And>y. y \<in> A \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x y)"
+ shows "ccpo.admissible lub ord (\<lambda>x. \<forall>y\<in>A. P x y)"
+using assms unfolding ccpo.admissible_def by fast
-lemma chain_compr: "chain (op \<le>) A \<Longrightarrow> chain (op \<le>) {x \<in> A. P x}"
+lemma chain_compr: "chain ord A \<Longrightarrow> chain ord {x \<in> A. P x}"
unfolding chain_def by fast
+context ccpo begin
+
lemma admissible_disj_lemma:
assumes A: "chain (op \<le>)A"
assumes P: "\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y"
@@ -238,10 +243,10 @@
lemma admissible_disj:
fixes P Q :: "'a \<Rightarrow> bool"
- assumes P: "admissible (\<lambda>x. P x)"
- assumes Q: "admissible (\<lambda>x. Q x)"
- shows "admissible (\<lambda>x. P x \<or> Q x)"
-proof (rule admissibleI)
+ assumes P: "ccpo.admissible Sup (op \<le>) (\<lambda>x. P x)"
+ assumes Q: "ccpo.admissible Sup (op \<le>) (\<lambda>x. Q x)"
+ shows "ccpo.admissible Sup (op \<le>) (\<lambda>x. P x \<or> Q x)"
+proof (rule ccpo.admissibleI)
fix A :: "'a set" assume A: "chain (op \<le>) A"
assume "\<forall>x\<in>A. P x \<or> Q x"
hence "(\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y) \<or> (\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> Q y)"
@@ -250,8 +255,8 @@
using admissible_disj_lemma [OF A] by fast
thus "P (Sup A) \<or> Q (Sup A)"
apply (rule disjE, simp_all)
- apply (rule disjI1, rule admissibleD [OF P chain_compr [OF A]], simp)
- apply (rule disjI2, rule admissibleD [OF Q chain_compr [OF A]], simp)
+ apply (rule disjI1, rule ccpo.admissibleD [OF P chain_compr [OF A]], simp)
+ apply (rule disjI2, rule ccpo.admissibleD [OF Q chain_compr [OF A]], simp)
done
qed
@@ -271,6 +276,6 @@
by (rule fixp_lowerbound [OF f'], subst lfp_unfold [OF f], rule order_refl)
qed
-hide_const (open) iterates fixp admissible
+hide_const (open) iterates fixp
end