src/HOL/Probability/Information.thy
changeset 62975 1d066f6ab25d
parent 62390 842917225d56
child 63040 eb4ddd18d635
--- a/src/HOL/Probability/Information.thy	Thu Apr 14 12:17:44 2016 +0200
+++ b/src/HOL/Probability/Information.thy	Thu Apr 14 15:48:11 2016 +0200
@@ -73,7 +73,7 @@
 Kullback$-$Leibler distance.\<close>
 
 definition
-  "entropy_density b M N = log b \<circ> real_of_ereal \<circ> RN_deriv M N"
+  "entropy_density b M N = log b \<circ> enn2real \<circ> RN_deriv M N"
 
 definition
   "KL_divergence b M N = integral\<^sup>L N (entropy_density b M N)"
@@ -88,17 +88,17 @@
   shows "KL_divergence b M (density M f) = (\<integral>x. f x * log b (f x) \<partial>M)"
   unfolding KL_divergence_def
 proof (subst integral_real_density)
-  show [measurable]: "entropy_density b M (density M (\<lambda>x. ereal (f x))) \<in> borel_measurable M"
+  show [measurable]: "entropy_density b M (density M (\<lambda>x. ennreal (f x))) \<in> borel_measurable M"
     using f
     by (auto simp: comp_def entropy_density_def)
   have "density M (RN_deriv M (density M f)) = density M f"
     using f nn by (intro density_RN_deriv_density) auto
   then have eq: "AE x in M. RN_deriv M (density M f) x = f x"
-    using f nn by (intro density_unique) (auto simp: RN_deriv_nonneg)
-  show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ereal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)"
+    using f nn by (intro density_unique) auto
+  show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)"
     apply (intro integral_cong_AE)
     apply measurable
-    using eq
+    using eq nn
     apply eventually_elim
     apply (auto simp: entropy_density_def)
     done
@@ -141,12 +141,12 @@
   have [simp, intro]: "?D_set \<in> sets M"
     using D by auto
 
-  have D_neg: "(\<integral>\<^sup>+ x. ereal (- D x) \<partial>M) = 0"
-    using D by (subst nn_integral_0_iff_AE) auto
+  have D_neg: "(\<integral>\<^sup>+ x. ennreal (- D x) \<partial>M) = 0"
+    using D by (subst nn_integral_0_iff_AE) (auto simp: ennreal_neg)
 
-  have "(\<integral>\<^sup>+ x. ereal (D x) \<partial>M) = emeasure (density M D) (space M)"
+  have "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = emeasure (density M D) (space M)"
     using D by (simp add: emeasure_density cong: nn_integral_cong)
-  then have D_pos: "(\<integral>\<^sup>+ x. ereal (D x) \<partial>M) = 1"
+  then have D_pos: "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = 1"
     using N.emeasure_space_1 by simp
 
   have "integrable M D"
@@ -162,10 +162,10 @@
   also have "\<dots> < (\<integral> x. D x * (ln b * log b (D x)) \<partial>M)"
   proof (rule integral_less_AE)
     show "integrable M (\<lambda>x. D x - indicator ?D_set x)"
-      using \<open>integrable M D\<close> by auto
+      using \<open>integrable M D\<close> by (auto simp: less_top[symmetric])
   next
     from integrable_mult_left(1)[OF int, of "ln b"]
-    show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))" 
+    show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))"
       by (simp add: ac_simps)
   next
     show "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<noteq> 0"
@@ -176,12 +176,12 @@
 
       have "emeasure M {x\<in>space M. D x = 1} = (\<integral>\<^sup>+ x. indicator {x\<in>space M. D x = 1} x \<partial>M)"
         using D(1) by auto
-      also have "\<dots> = (\<integral>\<^sup>+ x. ereal (D x) \<partial>M)"
-        using disj by (auto intro!: nn_integral_cong_AE simp: indicator_def one_ereal_def)
+      also have "\<dots> = (\<integral>\<^sup>+ x. ennreal (D x) \<partial>M)"
+        using disj by (auto intro!: nn_integral_cong_AE simp: indicator_def one_ennreal_def)
       finally have "AE x in M. D x = 1"
         using D D_pos by (intro AE_I_eq_1) auto
-      then have "(\<integral>\<^sup>+x. indicator A x\<partial>M) = (\<integral>\<^sup>+x. ereal (D x) * indicator A x\<partial>M)"
-        by (intro nn_integral_cong_AE) (auto simp: one_ereal_def[symmetric])
+      then have "(\<integral>\<^sup>+x. indicator A x\<partial>M) = (\<integral>\<^sup>+x. ennreal (D x) * indicator A x\<partial>M)"
+        by (intro nn_integral_cong_AE) (auto simp: one_ennreal_def[symmetric])
       also have "\<dots> = density M D A"
         using \<open>A \<in> sets M\<close> D by (simp add: emeasure_density)
       finally show False using \<open>A \<in> sets M\<close> \<open>emeasure (density M D) A \<noteq> emeasure M A\<close> by simp
@@ -240,14 +240,13 @@
 proof -
   have "AE x in M. 1 = RN_deriv M M x"
   proof (rule RN_deriv_unique)
-    show "(\<lambda>x. 1) \<in> borel_measurable M" "AE x in M. 0 \<le> (1 :: ereal)" by auto
     show "density M (\<lambda>x. 1) = M"
       apply (auto intro!: measure_eqI emeasure_density)
       apply (subst emeasure_density)
       apply auto
       done
-  qed
-  then have "AE x in M. log b (real_of_ereal (RN_deriv M M x)) = 0"
+  qed auto
+  then have "AE x in M. log b (enn2real (RN_deriv M M x)) = 0"
     by (elim AE_mp) simp
   from integral_cong_AE[OF _ _ this]
   have "integral\<^sup>L M (entropy_density b M M) = 0"
@@ -276,7 +275,7 @@
   interpret N: prob_space N by fact
   have "finite_measure N" by unfold_locales
   from real_RN_deriv[OF this ac] guess D . note D = this
-  
+
   have "N = density M (RN_deriv M N)"
     using ac by (rule density_RN_deriv[symmetric])
   also have "\<dots> = density M D"
@@ -334,36 +333,28 @@
 
 subsection \<open>Finite Entropy\<close>
 
-definition (in information_space) 
-  "finite_entropy S X f \<longleftrightarrow> distributed M S X f \<and> integrable S (\<lambda>x. f x * log b (f x))"
+definition (in information_space) finite_entropy :: "'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> real) \<Rightarrow> bool"
+where
+  "finite_entropy S X f \<longleftrightarrow>
+    distributed M S X f \<and>
+    integrable S (\<lambda>x. f x * log b (f x)) \<and>
+    (\<forall>x\<in>space S. 0 \<le> f x)"
 
 lemma (in information_space) finite_entropy_simple_function:
   assumes X: "simple_function M X"
   shows "finite_entropy (count_space (X`space M)) X (\<lambda>a. measure M {x \<in> space M. X x = a})"
   unfolding finite_entropy_def
-proof
+proof safe
   have [simp]: "finite (X ` space M)"
     using X by (auto simp: simple_function_def)
   then show "integrable (count_space (X ` space M))
      (\<lambda>x. prob {xa \<in> space M. X xa = x} * log b (prob {xa \<in> space M. X xa = x}))"
     by (rule integrable_count_space)
-  have d: "distributed M (count_space (X ` space M)) X (\<lambda>x. ereal (if x \<in> X`space M then prob {xa \<in> space M. X xa = x} else 0))"
+  have d: "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (if x \<in> X`space M then prob {xa \<in> space M. X xa = x} else 0))"
     by (rule distributed_simple_function_superset[OF X]) (auto intro!: arg_cong[where f=prob])
-  show "distributed M (count_space (X ` space M)) X (\<lambda>x. ereal (prob {xa \<in> space M. X xa = x}))"
+  show "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (prob {xa \<in> space M. X xa = x}))"
     by (rule distributed_cong_density[THEN iffD1, OF _ _ _ d]) auto
-qed
-
-lemma distributed_transform_AE:
-  assumes T: "T \<in> measurable P Q" "absolutely_continuous Q (distr P Q T)"
-  assumes g: "distributed M Q Y g"
-  shows "AE x in P. 0 \<le> g (T x)"
-  using g
-  apply (subst AE_distr_iff[symmetric, OF T(1)])
-  apply simp
-  apply (rule absolutely_continuous_AE[OF _ T(2)])
-  apply simp
-  apply (simp add: distributed_AE)
-  done
+qed (rule measure_nonneg)
 
 lemma ac_fst:
   assumes "sigma_finite_measure T"
@@ -411,15 +402,34 @@
   "finite_entropy S X Px \<Longrightarrow> distributed M S X Px"
   unfolding finite_entropy_def by auto
 
+lemma (in information_space) finite_entropy_nn:
+  "finite_entropy S X Px \<Longrightarrow> x \<in> space S \<Longrightarrow> 0 \<le> Px x"
+  by (auto simp: finite_entropy_def)
+
+lemma (in information_space) finite_entropy_measurable:
+  "finite_entropy S X Px \<Longrightarrow> Px \<in> S \<rightarrow>\<^sub>M borel"
+  using distributed_real_measurable[of S Px M X]
+    finite_entropy_nn[of S X Px] finite_entropy_distributed[of S X Px] by auto
+
+lemma (in information_space) subdensity_finite_entropy:
+  fixes g :: "'b \<Rightarrow> real" and f :: "'c \<Rightarrow> real"
+  assumes T: "T \<in> measurable P Q"
+  assumes f: "finite_entropy P X f"
+  assumes g: "finite_entropy Q Y g"
+  assumes Y: "Y = T \<circ> X"
+  shows "AE x in P. g (T x) = 0 \<longrightarrow> f x = 0"
+  using subdensity[OF T, of M X "\<lambda>x. ennreal (f x)" Y "\<lambda>x. ennreal (g x)"]
+    finite_entropy_distributed[OF f] finite_entropy_distributed[OF g]
+    finite_entropy_nn[OF f] finite_entropy_nn[OF g]
+    assms
+  by auto
+
 lemma (in information_space) finite_entropy_integrable_transform:
-  assumes Fx: "finite_entropy S X Px"
-  assumes Fy: "distributed M T Y Py"
-    and "X = (\<lambda>x. f (Y x))"
-    and "f \<in> measurable T S"
-  shows "integrable T (\<lambda>x. Py x * log b (Px (f x)))"
-  using assms unfolding finite_entropy_def
+  "finite_entropy S X Px \<Longrightarrow> distributed M T Y Py \<Longrightarrow> (\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x) \<Longrightarrow>
+    X = (\<lambda>x. f (Y x)) \<Longrightarrow> f \<in> measurable T S \<Longrightarrow> integrable T (\<lambda>x. Py x * log b (Px (f x)))"
   using distributed_transform_integrable[of M T Y Py S X Px f "\<lambda>x. log b (Px x)"]
-  by auto
+  using distributed_real_measurable[of S Px M X]
+  by (auto simp: finite_entropy_def)
 
 subsection \<open>Mutual Information\<close>
 
@@ -503,16 +513,25 @@
   shows mutual_information_distr': "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R")
     and mutual_information_nonneg': "0 \<le> mutual_information b S T X Y"
 proof -
-  have Px: "distributed M S X Px"
+  have Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
     using Fx by (auto simp: finite_entropy_def)
-  have Py: "distributed M T Y Py"
+  have Py: "distributed M T Y Py" and Py_nn: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
     using Fy by (auto simp: finite_entropy_def)
   have Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
-    using Fxy by (auto simp: finite_entropy_def)
+    and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x"
+      "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)"
+    using Fxy by (auto simp: finite_entropy_def space_pair_measure)
 
-  have X: "random_variable S X"
+  have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel"
+    using Px Px_nn by (intro distributed_real_measurable)
+  have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel"
+    using Py Py_nn by (intro distributed_real_measurable)
+  have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel"
+    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
+  have X[measurable]: "random_variable S X"
     using Px by auto
-  have Y: "random_variable T Y"
+  have Y[measurable]: "random_variable T Y"
     using Py by auto
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
@@ -524,53 +543,46 @@
   let ?D = "distr M ?P (\<lambda>x. (X x, Y x))"
 
   { fix A assume "A \<in> sets S"
-    with X Y have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)"
-      by (auto simp: emeasure_distr measurable_Pair measurable_space
-               intro!: arg_cong[where f="emeasure M"]) }
+    with X[THEN measurable_space] Y[THEN measurable_space]
+    have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)"
+      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
   note marginal_eq1 = this
   { fix A assume "A \<in> sets T"
-    with X Y have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)"
-      by (auto simp: emeasure_distr measurable_Pair measurable_space
-               intro!: arg_cong[where f="emeasure M"]) }
+    with X[THEN measurable_space] Y[THEN measurable_space]
+    have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)"
+      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
   note marginal_eq2 = this
 
-  have eq: "(\<lambda>x. ereal (Px (fst x) * Py (snd x))) = (\<lambda>(x, y). ereal (Px x) * ereal (Py y))"
-    by auto
-
-  have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))"
-    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] eq
+  have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))"
+    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density]
   proof (subst pair_measure_density)
-    show "(\<lambda>x. ereal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ereal (Py y)) \<in> borel_measurable T"
-      "AE x in S. 0 \<le> ereal (Px x)" "AE y in T. 0 \<le> ereal (Py y)"
+    show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T"
       using Px Py by (auto simp: distributed_def)
     show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] ..
-  qed (fact | simp)+
-  
-  have M: "?M = KL_divergence b (density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ereal (Pxy x)))"
+    show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) =
+      density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))"
+      using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure)
+  qed fact
+
+  have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))"
     unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] ..
 
   from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P"
     by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'')
   have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)"
-  proof (rule ST.AE_pair_measure)
-    show "{x \<in> space ?P. 0 \<le> Px (fst x) * Py (snd x)} \<in> sets ?P"
-      using f by auto
-    show "AE x in S. AE y in T. 0 \<le> Px (fst (x, y)) * Py (snd (x, y))"
-      using Px Py by (auto simp: zero_le_mult_iff dest!: distributed_real_AE)
-  qed
+    using Px_nn Py_nn by (auto simp: space_pair_measure)
 
-  have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)"
-    by (rule subdensity_real[OF measurable_fst Pxy Px]) auto
+  have A: "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)"
+    by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure)
   moreover
-  have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"
-    by (rule subdensity_real[OF measurable_snd Pxy Py]) auto
+  have B: "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"
+    by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
   ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
     by eventually_elim auto
 
   show "?M = ?R"
-    unfolding M f_def
-    using b_gt_1 f PxPy_nonneg Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] ac
-    by (rule ST.KL_density_density)
+    unfolding M f_def using Pxy_nn Px_nn Py_nn
+    by (intro ST.KL_density_density b_gt_1 f PxPy_nonneg ac) (auto simp: space_pair_measure)
 
   have X: "X = fst \<circ> (\<lambda>x. (X x, Y x))" and Y: "Y = snd \<circ> (\<lambda>x. (X x, Y x))"
     by auto
@@ -579,47 +591,52 @@
     using finite_entropy_integrable[OF Fxy]
     using finite_entropy_integrable_transform[OF Fx Pxy, of fst]
     using finite_entropy_integrable_transform[OF Fy Pxy, of snd]
-    by simp
+    by (simp add: Pxy_nn)
   moreover have "f \<in> borel_measurable (S \<Otimes>\<^sub>M T)"
     unfolding f_def using Px Py Pxy
     by (auto intro: distributed_real_measurable measurable_fst'' measurable_snd''
       intro!: borel_measurable_times borel_measurable_log borel_measurable_divide)
   ultimately have int: "integrable (S \<Otimes>\<^sub>M T) f"
     apply (rule integrable_cong_AE_imp)
-    using
-      distributed_transform_AE[OF measurable_fst ac_fst, of T, OF T Px]
-      distributed_transform_AE[OF measurable_snd ac_snd, of _ _ _ _ S, OF T Py]
-      subdensity_real[OF measurable_fst Pxy Px X]
-      subdensity_real[OF measurable_snd Pxy Py Y]
-      distributed_real_AE[OF Pxy]
+    using A B AE_space
     by eventually_elim
-       (auto simp: f_def log_divide_eq log_mult_eq field_simps zero_less_mult_iff)
+       (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn
+                  less_le)
 
   show "0 \<le> ?M" unfolding M
-  proof (rule ST.KL_density_density_nonneg
-    [OF b_gt_1 f PxPy_nonneg _ Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] _ ac int[unfolded f_def]])
-    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Pxy x))) "
+  proof (intro ST.KL_density_density_nonneg)
+    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) "
       unfolding distributed_distr_eq_density[OF Pxy, symmetric]
       using distributed_measurable[OF Pxy] by (rule prob_space_distr)
-    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Px (fst x) * Py (snd x))))"
+    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))"
       unfolding distr_eq[symmetric] by unfold_locales
-  qed
+    show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))"
+      using int unfolding f_def .
+  qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure)
 qed
 
-
 lemma (in information_space)
   fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"
   assumes "sigma_finite_measure S" "sigma_finite_measure T"
-  assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py"
-  assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+  assumes Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
+    and Py: "distributed M T Y Py" and Py_nn: "\<And>y. y \<in> space T \<Longrightarrow> 0 \<le> Py y"
+    and Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    and Pxy_nn: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)"
   defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"
   shows mutual_information_distr: "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R")
     and mutual_information_nonneg: "integrable (S \<Otimes>\<^sub>M T) f \<Longrightarrow> 0 \<le> mutual_information b S T X Y"
 proof -
-  have X: "random_variable S X"
+  have X[measurable]: "random_variable S X"
     using Px by (auto simp: distributed_def)
-  have Y: "random_variable T Y"
+  have Y[measurable]: "random_variable T Y"
     using Py by (auto simp: distributed_def)
+  have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel"
+    using Px Px_nn by (intro distributed_real_measurable)
+  have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel"
+    using Py Py_nn by (intro distributed_real_measurable)
+  have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel"
+    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
   interpret ST: pair_sigma_finite S T ..
@@ -630,100 +647,100 @@
   let ?D = "distr M ?P (\<lambda>x. (X x, Y x))"
 
   { fix A assume "A \<in> sets S"
-    with X Y have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)"
-      by (auto simp: emeasure_distr measurable_Pair measurable_space
-               intro!: arg_cong[where f="emeasure M"]) }
+    with X[THEN measurable_space] Y[THEN measurable_space]
+    have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)"
+      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
   note marginal_eq1 = this
   { fix A assume "A \<in> sets T"
-    with X Y have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)"
-      by (auto simp: emeasure_distr measurable_Pair measurable_space
-               intro!: arg_cong[where f="emeasure M"]) }
+    with X[THEN measurable_space] Y[THEN measurable_space]
+    have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)"
+      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
   note marginal_eq2 = this
 
-  have eq: "(\<lambda>x. ereal (Px (fst x) * Py (snd x))) = (\<lambda>(x, y). ereal (Px x) * ereal (Py y))"
-    by auto
-
-  have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))"
-    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] eq
+  have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))"
+    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density]
   proof (subst pair_measure_density)
-    show "(\<lambda>x. ereal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ereal (Py y)) \<in> borel_measurable T"
-      "AE x in S. 0 \<le> ereal (Px x)" "AE y in T. 0 \<le> ereal (Py y)"
+    show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T"
       using Px Py by (auto simp: distributed_def)
     show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] ..
-  qed (fact | simp)+
-  
-  have M: "?M = KL_divergence b (density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ereal (Pxy x)))"
+    show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) =
+      density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))"
+      using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure)
+  qed fact
+
+  have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))"
     unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] ..
 
   from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P"
     by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'')
   have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)"
-  proof (rule ST.AE_pair_measure)
-    show "{x \<in> space ?P. 0 \<le> Px (fst x) * Py (snd x)} \<in> sets ?P"
-      using f by auto
-    show "AE x in S. AE y in T. 0 \<le> Px (fst (x, y)) * Py (snd (x, y))"
-      using Px Py by (auto simp: zero_le_mult_iff dest!: distributed_real_AE)
-  qed
+    using Px_nn Py_nn by (auto simp: space_pair_measure)
 
   have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)"
-    by (rule subdensity_real[OF measurable_fst Pxy Px]) auto
+    by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure)
   moreover
   have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"
-    by (rule subdensity_real[OF measurable_snd Pxy Py]) auto
+    by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
   ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
     by eventually_elim auto
 
   show "?M = ?R"
     unfolding M f_def
-    using b_gt_1 f PxPy_nonneg Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] ac
-    by (rule ST.KL_density_density)
+    using b_gt_1 f PxPy_nonneg ac Pxy_nn
+    by (intro ST.KL_density_density) (auto simp: space_pair_measure)
 
   assume int: "integrable (S \<Otimes>\<^sub>M T) f"
   show "0 \<le> ?M" unfolding M
-  proof (rule ST.KL_density_density_nonneg
-    [OF b_gt_1 f PxPy_nonneg _ Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] _ ac int[unfolded f_def]])
-    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Pxy x))) "
+  proof (intro ST.KL_density_density_nonneg)
+    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) "
       unfolding distributed_distr_eq_density[OF Pxy, symmetric]
       using distributed_measurable[OF Pxy] by (rule prob_space_distr)
-    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Px (fst x) * Py (snd x))))"
+    show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))"
       unfolding distr_eq[symmetric] by unfold_locales
-  qed
+    show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))"
+      using int unfolding f_def .
+  qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure)
 qed
 
 lemma (in information_space)
   fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"
   assumes "sigma_finite_measure S" "sigma_finite_measure T"
-  assumes Px[measurable]: "distributed M S X Px" and Py[measurable]: "distributed M T Y Py"
-  assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+  assumes Px[measurable]: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
+    and Py[measurable]: "distributed M T Y Py" and Py_nn:  "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
+    and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x"
   assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y"
   shows mutual_information_eq_0: "mutual_information b S T X Y = 0"
 proof -
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
   interpret ST: pair_sigma_finite S T ..
+  note
+    distributed_real_measurable[OF Px_nn Px, measurable]
+    distributed_real_measurable[OF Py_nn Py, measurable]
+    distributed_real_measurable[OF Pxy_nn Pxy, measurable]
 
   have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0"
-    by (rule subdensity_real[OF measurable_fst Pxy Px]) auto
+    by (rule subdensity_real[OF measurable_fst Pxy Px]) (auto simp: Px_nn Pxy_nn space_pair_measure)
   moreover
   have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
-    by (rule subdensity_real[OF measurable_snd Pxy Py]) auto
-  moreover 
+    by (rule subdensity_real[OF measurable_snd Pxy Py]) (auto simp: Py_nn Pxy_nn space_pair_measure)
+  moreover
   have "AE x in S \<Otimes>\<^sub>M T. Pxy x = Px (fst x) * Py (snd x)"
-    using distributed_real_measurable[OF Px] distributed_real_measurable[OF Py] distributed_real_measurable[OF Pxy]
     by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'')
   ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0"
     by eventually_elim simp
   then have "(\<integral>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) \<partial>(S \<Otimes>\<^sub>M T)) = (\<integral>x. 0 \<partial>(S \<Otimes>\<^sub>M T))"
     by (intro integral_cong_AE) auto
   then show ?thesis
-    by (subst mutual_information_distr[OF assms(1-5)]) simp
+    by (subst mutual_information_distr[OF assms(1-8)]) (auto simp add: space_pair_measure)
 qed
 
 lemma (in information_space) mutual_information_simple_distributed:
   assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py"
   assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"
   shows "\<I>(X ; Y) = (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"
-proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]])
+proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]])
   note fin = simple_distributed_joint_finite[OF XY, simp]
   show "sigma_finite_measure (count_space (X ` space M))"
     by (simp add: sigma_finite_measure_count_space_finite)
@@ -737,7 +754,7 @@
     (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"
     by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite setsum.If_cases split_beta'
              intro!: setsum.cong)
-qed
+qed (insert X Y XY, auto simp: simple_distributed_def)
 
 lemma (in information_space)
   fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"
@@ -766,7 +783,7 @@
   assumes X: "distributed M S X Px"
   shows "AE x in S. RN_deriv S (density S Px) x = Px x"
 proof -
-  note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] distributed_AE[OF X]
+  note D = distributed_measurable[OF X] distributed_borel_measurable[OF X]
   interpret X: prob_space "distr M S X"
     using D(1) by (rule prob_space_distr)
 
@@ -775,19 +792,20 @@
     using D
     apply (subst eq_commute)
     apply (intro RN_deriv_unique_sigma_finite)
-    apply (auto simp: distributed_distr_eq_density[symmetric, OF X] sf measure_nonneg)
+    apply (auto simp: distributed_distr_eq_density[symmetric, OF X] sf)
     done
 qed
 
 lemma (in information_space)
   fixes X :: "'a \<Rightarrow> 'b"
-  assumes X[measurable]: "distributed M MX X f"
+  assumes X[measurable]: "distributed M MX X f" and nn: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> f x"
   shows entropy_distr: "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)" (is ?eq)
 proof -
-  note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] distributed_AE[OF X]
+  note D = distributed_measurable[OF X] distributed_borel_measurable[OF X]
   note ae = distributed_RN_deriv[OF X]
+  note distributed_real_measurable[OF nn X, measurable]
 
-  have ae_eq: "AE x in distr M MX X. log b (real_of_ereal (RN_deriv MX (distr M MX X) x)) =
+  have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) =
     log b (f x)"
     unfolding distributed_distr_eq_density[OF X]
     apply (subst AE_density)
@@ -799,103 +817,79 @@
   have int_eq: "(\<integral> x. f x * log b (f x) \<partial>MX) = (\<integral> x. log b (f x) \<partial>distr M MX X)"
     unfolding distributed_distr_eq_density[OF X]
     using D
-    by (subst integral_density)
-       (auto simp: borel_measurable_ereal_iff)
+    by (subst integral_density) (auto simp: nn)
 
   show ?eq
     unfolding entropy_def KL_divergence_def entropy_density_def comp_def int_eq neg_equal_iff_equal
-    using ae_eq by (intro integral_cong_AE) auto
-qed
-
-lemma (in prob_space) distributed_imp_emeasure_nonzero:
-  assumes X: "distributed M MX X Px"
-  shows "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> 0"
-proof
-  note Px = distributed_borel_measurable[OF X] distributed_AE[OF X]
-  interpret X: prob_space "distr M MX X"
-    using distributed_measurable[OF X] by (rule prob_space_distr)
-
-  assume "emeasure MX {x \<in> space MX. Px x \<noteq> 0} = 0"
-  with Px have "AE x in MX. Px x = 0"
-    by (intro AE_I[OF subset_refl]) (auto simp: borel_measurable_ereal_iff)
-  moreover
-  from X.emeasure_space_1 have "(\<integral>\<^sup>+x. Px x \<partial>MX) = 1"
-    unfolding distributed_distr_eq_density[OF X] using Px
-    by (subst (asm) emeasure_density)
-       (auto simp: borel_measurable_ereal_iff intro!: integral_cong cong: nn_integral_cong)
-  ultimately show False
-    by (simp add: nn_integral_cong_AE)
+    using ae_eq by (intro integral_cong_AE) (auto simp: nn)
 qed
 
 lemma (in information_space) entropy_le:
   fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure"
-  assumes X[measurable]: "distributed M MX X Px"
-  and fin: "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> \<infinity>"
+  assumes X[measurable]: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x"
+  and fin: "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> top"
   and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))"
   shows "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 proof -
-  note Px = distributed_borel_measurable[OF X] distributed_AE[OF X]
+  note Px = distributed_borel_measurable[OF X]
   interpret X: prob_space "distr M MX X"
     using distributed_measurable[OF X] by (rule prob_space_distr)
 
-  have " - log b (measure MX {x \<in> space MX. Px x \<noteq> 0}) = 
+  have " - log b (measure MX {x \<in> space MX. Px x \<noteq> 0}) =
     - log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX)"
-    using Px fin
-    by (auto simp: measure_def borel_measurable_ereal_iff)
+    using Px Px_nn fin by (auto simp: measure_def)
   also have "- log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX) = - log b (\<integral> x. 1 / Px x \<partial>distr M MX X)"
-    unfolding distributed_distr_eq_density[OF X] using Px
+    unfolding distributed_distr_eq_density[OF X] using Px Px_nn
     apply (intro arg_cong[where f="log b"] arg_cong[where f=uminus])
-    by (subst integral_density) (auto simp: borel_measurable_ereal_iff simp del: integral_indicator intro!: integral_cong)
+    by (subst integral_density) (auto simp del: integral_indicator intro!: integral_cong)
   also have "\<dots> \<le> (\<integral> x. - log b (1 / Px x) \<partial>distr M MX X)"
   proof (rule X.jensens_inequality[of "\<lambda>x. 1 / Px x" "{0<..}" 0 1 "\<lambda>x. - log b x"])
     show "AE x in distr M MX X. 1 / Px x \<in> {0<..}"
       unfolding distributed_distr_eq_density[OF X]
       using Px by (auto simp: AE_density)
-    have [simp]: "\<And>x. x \<in> space MX \<Longrightarrow> ereal (if Px x = 0 then 0 else 1) = indicator {x \<in> space MX. Px x \<noteq> 0} x"
-      by (auto simp: one_ereal_def)
-    have "(\<integral>\<^sup>+ x. max 0 (ereal (- (if Px x = 0 then 0 else 1))) \<partial>MX) = (\<integral>\<^sup>+ x. 0 \<partial>MX)"
-      by (intro nn_integral_cong) (auto split: split_max)
+    have [simp]: "\<And>x. x \<in> space MX \<Longrightarrow> ennreal (if Px x = 0 then 0 else 1) = indicator {x \<in> space MX. Px x \<noteq> 0} x"
+      by (auto simp: one_ennreal_def)
+    have "(\<integral>\<^sup>+ x. ennreal (- (if Px x = 0 then 0 else 1)) \<partial>MX) = (\<integral>\<^sup>+ x. 0 \<partial>MX)"
+      by (intro nn_integral_cong) (auto simp: ennreal_neg)
     then show "integrable (distr M MX X) (\<lambda>x. 1 / Px x)"
       unfolding distributed_distr_eq_density[OF X] using Px
-      by (auto simp: nn_integral_density real_integrable_def borel_measurable_ereal_iff fin nn_integral_max_0
+      by (auto simp: nn_integral_density real_integrable_def fin ennreal_neg ennreal_mult[symmetric]
               cong: nn_integral_cong)
     have "integrable MX (\<lambda>x. Px x * log b (1 / Px x)) =
       integrable MX (\<lambda>x. - Px x * log b (Px x))"
       using Px
-      by (intro integrable_cong_AE)
-         (auto simp: borel_measurable_ereal_iff log_divide_eq
-                  intro!: measurable_If)
+      by (intro integrable_cong_AE) (auto simp: log_divide_eq less_le)
     then show "integrable (distr M MX X) (\<lambda>x. - log b (1 / Px x))"
       unfolding distributed_distr_eq_density[OF X]
       using Px int
-      by (subst integrable_real_density) (auto simp: borel_measurable_ereal_iff)
+      by (subst integrable_real_density) auto
   qed (auto simp: minus_log_convex[OF b_gt_1])
   also have "\<dots> = (\<integral> x. log b (Px x) \<partial>distr M MX X)"
     unfolding distributed_distr_eq_density[OF X] using Px
     by (intro integral_cong_AE) (auto simp: AE_density log_divide_eq)
   also have "\<dots> = - entropy b MX X"
     unfolding distributed_distr_eq_density[OF X] using Px
-    by (subst entropy_distr[OF X]) (auto simp: borel_measurable_ereal_iff integral_density)
+    by (subst entropy_distr[OF X]) (auto simp: integral_density)
   finally show ?thesis
     by simp
 qed
 
 lemma (in information_space) entropy_le_space:
   fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure"
-  assumes X: "distributed M MX X Px"
+  assumes X: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x"
   and fin: "finite_measure MX"
   and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))"
   shows "entropy b MX X \<le> log b (measure MX (space MX))"
 proof -
-  note Px = distributed_borel_measurable[OF X] distributed_AE[OF X]
+  note Px = distributed_borel_measurable[OF X]
   interpret finite_measure MX by fact
   have "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
     using int X by (intro entropy_le) auto
   also have "\<dots> \<le> log b (measure MX (space MX))"
     using Px distributed_imp_emeasure_nonzero[OF X]
     by (intro log_le)
-       (auto intro!: borel_measurable_ereal_iff finite_measure_mono b_gt_1
-                     less_le[THEN iffD2] measure_nonneg simp: emeasure_eq_measure)
+       (auto intro!: finite_measure_mono b_gt_1 less_le[THEN iffD2]
+             simp: emeasure_eq_measure cong: conj_cong)
   finally show ?thesis .
 qed
 
@@ -907,13 +901,13 @@
     using uniform_distributed_params[OF X] by (auto simp add: measure_def)
   have eq: "(\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) =
     (\<integral> x. (- log b (measure MX A) / measure MX A) * indicator A x \<partial>MX)"
-    using measure_nonneg[of MX A] uniform_distributed_params[OF X]
-    by (intro integral_cong) (auto split: split_indicator simp: log_divide_eq)
+    using uniform_distributed_params[OF X]
+    by (intro integral_cong) (auto split: split_indicator simp: log_divide_eq zero_less_measure_iff)
   show "- (\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) =
     log b (measure MX A)"
     unfolding eq using uniform_distributed_params[OF X]
-    by (subst integral_mult_right) (auto simp: measure_def)
-qed
+    by (subst integral_mult_right) (auto simp: measure_def less_top[symmetric] intro!: integrable_real_indicator)
+qed simp
 
 lemma (in information_space) entropy_simple_distributed:
   "simple_distributed M X f \<Longrightarrow> \<H>(X) = - (\<Sum>x\<in>X`space M. f x * log b (f x))"
@@ -927,7 +921,7 @@
   let ?X = "count_space (X`space M)"
   have "\<H>(X) \<le> log b (measure ?X {x \<in> space ?X. f x \<noteq> 0})"
     by (rule entropy_le[OF simple_distributed[OF X]])
-       (simp_all add: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space)
+       (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space)
   also have "measure ?X {x \<in> space ?X. f x \<noteq> 0} = card (X ` space M \<inter> {x. f x \<noteq> 0})"
     by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def Int_def)
   finally show ?thesis .
@@ -940,7 +934,7 @@
   let ?X = "count_space (X`space M)"
   have "\<H>(X) \<le> log b (measure ?X (space ?X))"
     by (rule entropy_le_space[OF simple_distributed[OF X]])
-       (simp_all add: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space)
+       (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space)
   also have "measure ?X (space ?X) = card (X ` space M)"
     by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def)
   finally show ?thesis .
@@ -961,16 +955,32 @@
 lemma (in information_space)
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P"
   assumes Px[measurable]: "distributed M S X Px"
+    and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
   assumes Pz[measurable]: "distributed M P Z Pz"
+    and Pz_nn[simp]: "\<And>z. z \<in> space P \<Longrightarrow> 0 \<le> Pz z"
   assumes Pyz[measurable]: "distributed M (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x)) Pyz"
+    and Pyz_nn[simp]: "\<And>y z. y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pyz (y, z)"
   assumes Pxz[measurable]: "distributed M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) Pxz"
+    and Pxz_nn[simp]: "\<And>x z. x \<in> space S \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxz (x, z)"
   assumes Pxyz[measurable]: "distributed M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz"
+    and Pxyz_nn[simp]: "\<And>x y z. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxyz (x, y, z)"
   assumes I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"
   assumes I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"
   shows conditional_mutual_information_generic_eq: "conditional_mutual_information b S T P X Y Z
     = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" (is "?eq")
     and conditional_mutual_information_generic_nonneg: "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg")
 proof -
+  have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel"
+    using Px Px_nn by (intro distributed_real_measurable)
+  have [measurable]: "Pz \<in> P \<rightarrow>\<^sub>M borel"
+    using Pz Pz_nn by (intro distributed_real_measurable)
+  have measurable_Pyz[measurable]: "Pyz \<in> (T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel"
+    using Pyz Pyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+  have measurable_Pxz[measurable]: "Pxz \<in> (S \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel"
+    using Pxz Pxz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+  have measurable_Pxyz[measurable]: "Pxyz \<in> (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel"
+    using Pxyz Pxyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
   interpret P: sigma_finite_measure P by fact
@@ -984,43 +994,34 @@
   have SP: "sigma_finite_measure (S \<Otimes>\<^sub>M P)" ..
   have YZ: "random_variable (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x))"
     using Pyz by (simp add: distributed_measurable)
-  
+
   from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) =
     distr (distr M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). (x, z))"
     by (simp add: comp_def distr_distr)
 
   have "mutual_information b S P X Z =
     (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))"
-    by (rule mutual_information_distr[OF S P Px Pz Pxz])
+    by (rule mutual_information_distr[OF S P Px Px_nn Pz Pz_nn Pxz Pxz_nn])
   also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))"
     using b_gt_1 Pxz Px Pz
-    by (subst distributed_transform_integral[OF Pxyz Pxz, where T="\<lambda>(x, y, z). (x, z)"]) (auto simp: split_beta')
+    by (subst distributed_transform_integral[OF Pxyz _ Pxz _, where T="\<lambda>(x, y, z). (x, z)"])
+       (auto simp: split_beta' space_pair_measure)
   finally have mi_eq:
     "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" .
-  
+
   have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of fst, OF _ Pxyz Px]) auto
+    by (intro subdensity_real[of fst, OF _ Pxyz Px]) (auto simp: space_pair_measure)
   moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) auto
+    by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) (auto simp: space_pair_measure)
   moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) auto
+    by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) (auto simp: space_pair_measure)
   moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) auto
-  moreover have ae5: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Px (fst x)"
-    using Px by (intro STP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE)
-  moreover have ae6: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pyz (snd x)"
-    using Pyz by (intro STP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE)
-  moreover have ae7: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd (snd x))"
-    using Pz Pz[THEN distributed_real_measurable]
-    by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure AE_I2[of S] dest: distributed_real_AE)
-  moreover have ae8: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pxz (fst x, snd (snd x))"
-    using Pxz[THEN distributed_real_AE, THEN SP.AE_pair]
-    by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure)
-  moreover note Pxyz[THEN distributed_real_AE]
+    by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) (auto simp: space_pair_measure)
   ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P.
     Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) -
     Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) =
     Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) "
+    using AE_space
   proof eventually_elim
     case (elim x)
     show ?case
@@ -1028,7 +1029,7 @@
       assume "Pxyz x \<noteq> 0"
       with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))"
         "0 < Pyz (snd x)" "0 < Pxyz x"
-        by auto
+        by (auto simp: space_pair_measure less_le)
       then show ?thesis
         using b_gt_1 by (simp add: log_simps less_imp_le field_simps)
     qed simp
@@ -1036,7 +1037,8 @@
   with I1 I2 show ?eq
     unfolding conditional_mutual_information_def
     apply (subst mi_eq)
-    apply (subst mutual_information_distr[OF S TP Px Pyz Pxyz])
+    apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz _ Pxyz])
+    apply (auto simp: space_pair_measure)
     apply (subst integral_diff[symmetric])
     apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff)
     done
@@ -1053,40 +1055,34 @@
 
   let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)"
 
-  from subdensity_real[of snd, OF _ Pyz Pz]
-  have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def)
+  from subdensity_real[of snd, OF _ Pyz Pz _ AE_I2 AE_I2]
+  have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0"
+    by (auto simp: comp_def space_pair_measure)
   have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)"
-    using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE)
+    using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def)
 
-  have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ereal (Pxz (x, snd y)) \<partial>S) = ereal (Pz (snd y))"
+  have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))"
     using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz]
-    by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE)
+    by (intro TP.AE_pair_measure) auto
 
   have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))"
-    apply (subst nn_integral_density)
-    apply simp
-    apply (rule distributed_AE[OF Pxyz])
-    apply auto []
-    apply (rule nn_integral_mono_AE)
-    using ae5 ae6 ae7 ae8
+    by (subst nn_integral_density)
+       (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric])
+  also have "\<dots> = (\<integral>\<^sup>+(y, z). (\<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S) \<partial>(T \<Otimes>\<^sub>M P))"
+    by (subst STP.nn_integral_snd[symmetric])
+       (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong)
+  also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
+    apply (rule nn_integral_cong_AE)
+    using aeX1 aeX2 aeX3 AE_space
     apply eventually_elim
-    apply auto
-    done
-  also have "\<dots> = (\<integral>\<^sup>+(y, z). \<integral>\<^sup>+ x. ereal (Pxz (x, z)) * ereal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^sub>M P)"
-    by (subst STP.nn_integral_snd[symmetric]) (auto simp add: split_beta')
-  also have "\<dots> = (\<integral>\<^sup>+x. ereal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
-    apply (rule nn_integral_cong_AE)
-    using aeX1 aeX2 aeX3 distributed_AE[OF Pyz] AE_space
-    apply eventually_elim
-  proof (case_tac x, simp del: times_ereal.simps add: space_pair_measure)
-    fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P"
-      "(\<integral>\<^sup>+ x. ereal (Pxz (x, b)) \<partial>S) = ereal (Pz b)" "0 \<le> Pyz (a, b)" 
-    then show "(\<integral>\<^sup>+ x. ereal (Pxz (x, b)) * ereal (Pyz (a, b) / Pz b) \<partial>S) = ereal (Pyz (a, b))"
-      by (subst nn_integral_multc)
-         (auto split: prod.split)
+  proof (case_tac x, simp add: space_pair_measure)
+    fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "a \<in> space T \<and> b \<in> space P"
+      "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)"
+    then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
+      by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric])
   qed
   also have "\<dots> = 1"
-    using Q.emeasure_space_1 distributed_AE[OF Pyz] distributed_distr_eq_density[OF Pyz]
+    using Q.emeasure_space_1 distributed_distr_eq_density[OF Pyz]
     by (subst nn_integral_density[symmetric]) auto
   finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" .
   also have "\<dots> < \<infinity>" by simp
@@ -1094,19 +1090,16 @@
 
   have pos: "(\<integral>\<^sup>+x. ?f x \<partial>?P) \<noteq> 0"
     apply (subst nn_integral_density)
-    apply simp
-    apply (rule distributed_AE[OF Pxyz])
-    apply auto []
-    apply (simp add: split_beta')
+    apply (simp_all add: split_beta')
   proof
-    let ?g = "\<lambda>x. ereal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))"
+    let ?g = "\<lambda>x. ennreal (Pxyz x) * (Pxz (fst x, snd (snd x)) * Pyz (snd x) / (Pz (snd (snd x)) * Pxyz x))"
     assume "(\<integral>\<^sup>+x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0"
-    then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x \<le> 0"
+    then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0"
       by (intro nn_integral_0_iff_AE[THEN iffD1]) auto
     then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0"
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-      by eventually_elim (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff)
-    then have "(\<integral>\<^sup>+ x. ereal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
+      using ae1 ae2 ae3 ae4 AE_space
+      by eventually_elim (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
+    then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
       by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto
     with P.emeasure_space_1 show False
       by (subst (asm) emeasure_density) (auto cong: nn_integral_cong)
@@ -1116,10 +1109,7 @@
     apply (rule nn_integral_0_iff_AE[THEN iffD2])
     apply simp
     apply (subst AE_density)
-    apply simp
-    using ae5 ae6 ae7 ae8
-    apply eventually_elim
-    apply auto
+    apply (auto simp: space_pair_measure ennreal_neg)
     done
 
   have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
@@ -1142,45 +1132,45 @@
       apply (rule nn_integral_eq_integral)
       apply (subst AE_density)
       apply simp
-      using ae5 ae6 ae7 ae8
-      apply eventually_elim
-      apply auto
+      apply (auto simp: space_pair_measure ennreal_neg)
       done
-    with nn_integral_nonneg[of ?P ?f] pos le1
+    with pos le1
     show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1"
-      by (simp_all add: one_ereal_def)
+      by (simp_all add: one_ennreal.rep_eq zero_less_iff_neq_zero[symmetric])
   qed
   also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)"
   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
     show "AE x in ?P. ?f x \<in> {0<..}"
       unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]]
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-      by eventually_elim (auto)
+      using ae1 ae2 ae3 ae4 AE_space
+      by eventually_elim (auto simp: space_pair_measure less_le)
     show "integrable ?P ?f"
-      unfolding real_integrable_def 
+      unfolding real_integrable_def
       using fin neg by (auto simp: split_beta')
     show "integrable ?P (\<lambda>x. - log b (?f x))"
       apply (subst integrable_real_density)
       apply simp
-      apply (auto intro!: distributed_real_AE[OF Pxyz]) []
+      apply (auto simp: space_pair_measure) []
       apply simp
       apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
       apply simp
       apply simp
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
+      using ae1 ae2 ae3 ae4 AE_space
       apply eventually_elim
-      apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps)
+      apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps
+        less_le space_pair_measure)
       done
   qed (auto simp: b_gt_1 minus_log_convex)
   also have "\<dots> = conditional_mutual_information b S T P X Y Z"
     unfolding \<open>?eq\<close>
     apply (subst integral_real_density)
     apply simp
-    apply (auto intro!: distributed_real_AE[OF Pxyz]) []
+    apply (auto simp: space_pair_measure) []
     apply simp
     apply (intro integral_cong_AE)
-    using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-    apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps)
+    using ae1 ae2 ae3 ae4
+    apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps
+      space_pair_measure less_le)
     done
   finally show ?nonneg
     by simp
@@ -1204,6 +1194,18 @@
   note Pxz = Fxz[THEN finite_entropy_distributed, measurable]
   note Pxyz = Fxyz[THEN finite_entropy_distributed, measurable]
 
+  note Px_nn = Fx[THEN finite_entropy_nn]
+  note Pz_nn = Fz[THEN finite_entropy_nn]
+  note Pyz_nn = Fyz[THEN finite_entropy_nn]
+  note Pxz_nn = Fxz[THEN finite_entropy_nn]
+  note Pxyz_nn = Fxyz[THEN finite_entropy_nn]
+
+  note Px' = Fx[THEN finite_entropy_measurable, measurable]
+  note Pz' = Fz[THEN finite_entropy_measurable, measurable]
+  note Pyz' = Fyz[THEN finite_entropy_measurable, measurable]
+  note Pxz' = Fxz[THEN finite_entropy_measurable, measurable]
+  note Pxyz' = Fxyz[THEN finite_entropy_measurable, measurable]
+
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
   interpret P: sigma_finite_measure P by fact
@@ -1222,36 +1224,28 @@
 
   have "mutual_information b S P X Z =
     (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))"
-    by (rule mutual_information_distr[OF S P Px Pz Pxz])
+    using Px Px_nn Pz Pz_nn Pxz Pxz_nn
+    by (rule mutual_information_distr[OF S P]) (auto simp: space_pair_measure)
   also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))"
-    using b_gt_1 Pxz Px Pz
-    by (subst distributed_transform_integral[OF Pxyz Pxz, where T="\<lambda>(x, y, z). (x, z)"])
+    using b_gt_1 Pxz Pxz_nn Pxyz Pxyz_nn
+    by (subst distributed_transform_integral[OF Pxyz _ Pxz, where T="\<lambda>(x, y, z). (x, z)"])
        (auto simp: split_beta')
   finally have mi_eq:
     "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" .
-  
+
   have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of fst, OF _ Pxyz Px]) auto
+    by (intro subdensity_finite_entropy[of fst, OF _ Fxyz Fx]) auto
   moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) auto
+    by (intro subdensity_finite_entropy[of "\<lambda>x. snd (snd x)", OF _ Fxyz Fz]) auto
   moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) auto
+    by (intro subdensity_finite_entropy[of "\<lambda>x. (fst x, snd (snd x))", OF _ Fxyz Fxz]) auto
   moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0"
-    by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) auto
-  moreover have ae5: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Px (fst x)"
-    using Px by (intro STP.AE_pair_measure) (auto dest: distributed_real_AE)
-  moreover have ae6: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pyz (snd x)"
-    using Pyz by (intro STP.AE_pair_measure) (auto dest: distributed_real_AE)
-  moreover have ae7: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd (snd x))"
-    using Pz Pz[THEN distributed_real_measurable] by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure AE_I2[of S] dest: distributed_real_AE)
-  moreover have ae8: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. 0 \<le> Pxz (fst x, snd (snd x))"
-    using Pxz[THEN distributed_real_AE, THEN SP.AE_pair]
-    by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure simp: comp_def)
-  moreover note ae9 = Pxyz[THEN distributed_real_AE]
+    by (intro subdensity_finite_entropy[of snd, OF _ Fxyz Fyz]) auto
   ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P.
     Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) -
     Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) =
     Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) "
+    using AE_space
   proof eventually_elim
     case (elim x)
     show ?case
@@ -1259,7 +1253,8 @@
       assume "Pxyz x \<noteq> 0"
       with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))"
         "0 < Pyz (snd x)" "0 < Pxyz x"
-        by auto
+        using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+        by (auto simp: space_pair_measure less_le)
       then show ?thesis
         using b_gt_1 by (simp add: log_simps less_imp_le field_simps)
     qed simp
@@ -1268,36 +1263,41 @@
   have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)
     (\<lambda>x. Pxyz x * log b (Pxyz x) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pyz (snd x)))"
     using finite_entropy_integrable[OF Fxyz]
-    using finite_entropy_integrable_transform[OF Fx Pxyz, of fst]
-    using finite_entropy_integrable_transform[OF Fyz Pxyz, of snd]
+    using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst]
+    using finite_entropy_integrable_transform[OF Fyz Pxyz Pxyz_nn, of snd]
     by simp
   moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z)))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)"
     using Pxyz Px Pyz by simp
   ultimately have I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"
     apply (rule integrable_cong_AE_imp)
-    using ae1 ae4 ae5 ae6 ae9
+    using ae1 ae4 AE_space
     by eventually_elim
-       (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff)
+       (insert Px_nn Pyz_nn Pxyz_nn,
+        auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff space_pair_measure less_le)
 
   have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)
     (\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))"
-    using finite_entropy_integrable_transform[OF Fxz Pxyz, of "\<lambda>x. (fst x, snd (snd x))"]
-    using finite_entropy_integrable_transform[OF Fx Pxyz, of fst]
-    using finite_entropy_integrable_transform[OF Fz Pxyz, of "snd \<circ> snd"]
+    using finite_entropy_integrable_transform[OF Fxz Pxyz Pxyz_nn, of "\<lambda>x. (fst x, snd (snd x))"]
+    using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst]
+    using finite_entropy_integrable_transform[OF Fz Pxyz Pxyz_nn, of "snd \<circ> snd"]
     by simp
   moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)"
     using Pxyz Px Pz
     by auto
   ultimately have I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"
     apply (rule integrable_cong_AE_imp)
-    using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9
+    using ae1 ae2 ae3 ae4 AE_space
     by eventually_elim
-       (auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff)
+       (insert Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn,
+         auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff less_le space_pair_measure)
 
   from ae I1 I2 show ?eq
     unfolding conditional_mutual_information_def
     apply (subst mi_eq)
-    apply (subst mutual_information_distr[OF S TP Px Pyz Pxyz])
+    apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn])
+    apply simp
+    apply simp
+    apply (simp add: space_pair_measure)
     apply (subst integral_diff[symmetric])
     apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff)
     done
@@ -1312,72 +1312,66 @@
 
   let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)"
 
-  from subdensity_real[of snd, OF _ Pyz Pz]
+  from subdensity_finite_entropy[of snd, OF _ Fyz Fz]
   have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def)
   have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)"
-    using Pz by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE)
+    using Pz by (intro TP.AE_pair_measure) (auto intro: Pz_nn)
 
-  have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ereal (Pxz (x, snd y)) \<partial>S) = ereal (Pz (snd y))"
+  have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))"
     using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz]
-    by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE)
+    by (intro TP.AE_pair_measure) (auto )
   have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))"
-    apply (subst nn_integral_density)
-    apply (rule distributed_borel_measurable[OF Pxyz])
-    apply (rule distributed_AE[OF Pxyz])
-    apply simp
-    apply (rule nn_integral_mono_AE)
-    using ae5 ae6 ae7 ae8
+    using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+    by (subst nn_integral_density)
+       (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric])
+  also have "\<dots> = (\<integral>\<^sup>+(y, z). \<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^sub>M P)"
+    using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+    by (subst STP.nn_integral_snd[symmetric])
+       (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong)
+  also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
+    apply (rule nn_integral_cong_AE)
+    using aeX1 aeX2 aeX3 AE_space
     apply eventually_elim
-    apply auto
-    done
-  also have "\<dots> = (\<integral>\<^sup>+(y, z). \<integral>\<^sup>+ x. ereal (Pxz (x, z)) * ereal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^sub>M P)"
-    by (subst STP.nn_integral_snd[symmetric]) (auto simp add: split_beta')
-  also have "\<dots> = (\<integral>\<^sup>+x. ereal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)"
-    apply (rule nn_integral_cong_AE)
-    using aeX1 aeX2 aeX3 distributed_AE[OF Pyz] AE_space
-    apply eventually_elim
-  proof (case_tac x, simp del: times_ereal.simps add: space_pair_measure)
+  proof (case_tac x, simp add: space_pair_measure)
     fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P"
-      "(\<integral>\<^sup>+ x. ereal (Pxz (x, b)) \<partial>S) = ereal (Pz b)" "0 \<le> Pyz (a, b)" 
-    then show "(\<integral>\<^sup>+ x. ereal (Pxz (x, b)) * ereal (Pyz (a, b) / Pz b) \<partial>S) = ereal (Pyz (a, b))"
-      by (subst nn_integral_multc) auto
+      "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)"
+    then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))"
+      using Pyz_nn[of "(a,b)"]
+      by (subst nn_integral_multc) (auto simp: space_pair_measure ennreal_mult[symmetric])
   qed
   also have "\<dots> = 1"
-    using Q.emeasure_space_1 distributed_AE[OF Pyz] distributed_distr_eq_density[OF Pyz]
+    using Q.emeasure_space_1 Pyz_nn distributed_distr_eq_density[OF Pyz]
     by (subst nn_integral_density[symmetric]) auto
   finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" .
   also have "\<dots> < \<infinity>" by simp
   finally have fin: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp
 
-  have pos: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> 0"
+  have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> 0"
+    using Pxyz_nn
     apply (subst nn_integral_density)
-    apply simp
-    apply (rule distributed_AE[OF Pxyz])
-    apply simp
-    apply (simp add: split_beta')
+    apply (simp_all add: split_beta'  ennreal_mult'[symmetric] cong: nn_integral_cong)
   proof
-    let ?g = "\<lambda>x. ereal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))"
+    let ?g = "\<lambda>x. ennreal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))"
     assume "(\<integral>\<^sup>+ x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0"
-    then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x \<le> 0"
-      by (intro nn_integral_0_iff_AE[THEN iffD1]) (auto intro!: borel_measurable_ereal measurable_If)
+    then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0"
+      by (intro nn_integral_0_iff_AE[THEN iffD1]) auto
     then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0"
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-      by eventually_elim (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff)
-    then have "(\<integral>\<^sup>+ x. ereal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
+      using ae1 ae2 ae3 ae4 AE_space
+      by eventually_elim
+         (insert Px_nn Pz_nn Pxz_nn Pyz_nn,
+           auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
+    then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0"
       by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto
     with P.emeasure_space_1 show False
       by (subst (asm) emeasure_density) (auto cong: nn_integral_cong)
   qed
+  then have pos: "0 < (\<integral>\<^sup>+ x. ?f x \<partial>?P)"
+    by (simp add: zero_less_iff_neq_zero)
 
   have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0"
-    apply (rule nn_integral_0_iff_AE[THEN iffD2])
-    apply (auto simp: split_beta') []
-    apply (subst AE_density)
-    apply (auto simp: split_beta') []
-    using ae5 ae6 ae7 ae8
-    apply eventually_elim
-    apply auto
-    done
+    using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+    by (intro nn_integral_0_iff_AE[THEN iffD2])
+       (auto simp: split_beta' AE_density space_pair_measure intro!: AE_I2 ennreal_neg)
 
   have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
     apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ integrable_diff[OF I1 I2]])
@@ -1396,48 +1390,48 @@
         by simp
     qed simp
     then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)"
-      apply (rule nn_integral_eq_integral)
-      apply (subst AE_density)
-      apply simp
-      using ae5 ae6 ae7 ae8
-      apply eventually_elim
-      apply auto
-      done
-    with nn_integral_nonneg[of ?P ?f] pos le1
+      using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
+      by (intro nn_integral_eq_integral)
+         (auto simp: AE_density space_pair_measure)
+    with pos le1
     show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1"
-      by (simp_all add: one_ereal_def)
+      by (simp_all add: )
   qed
   also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)"
   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
     show "AE x in ?P. ?f x \<in> {0<..}"
       unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]]
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-      by eventually_elim (auto)
+      using ae1 ae2 ae3 ae4 AE_space
+      by eventually_elim (insert Pxyz_nn Pyz_nn Pz_nn Pxz_nn, auto simp: space_pair_measure less_le)
     show "integrable ?P ?f"
       unfolding real_integrable_def
       using fin neg by (auto simp: split_beta')
     show "integrable ?P (\<lambda>x. - log b (?f x))"
+      using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
       apply (subst integrable_real_density)
       apply simp
-      apply (auto intro!: distributed_real_AE[OF Pxyz]) []
+      apply simp
       apply simp
       apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
       apply simp
       apply simp
-      using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
+      using ae1 ae2 ae3 ae4 AE_space
       apply eventually_elim
-      apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps)
+      apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff
+                        zero_less_divide_iff field_simps space_pair_measure less_le)
       done
   qed (auto simp: b_gt_1 minus_log_convex)
   also have "\<dots> = conditional_mutual_information b S T P X Y Z"
     unfolding \<open>?eq\<close>
+    using Pz_nn Pxz_nn Pyz_nn Pxyz_nn
     apply (subst integral_real_density)
     apply simp
-    apply (auto intro!: distributed_real_AE[OF Pxyz]) []
+    apply simp
     apply simp
     apply (intro integral_cong_AE)
-    using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE]
-    apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps)
+    using ae1 ae2 ae3 ae4 AE_space
+    apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff
+                      field_simps space_pair_measure less_le)
     done
   finally show ?nonneg
     by simp
@@ -1450,8 +1444,8 @@
   assumes Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz"
   shows "\<I>(X ; Y | Z) =
    (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x))`space M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
-proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _
-    simple_distributed[OF Pz] simple_distributed_joint[OF Pyz] simple_distributed_joint[OF Pxz]
+proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _ _
+    simple_distributed[OF Pz] _ simple_distributed_joint[OF Pyz] _ simple_distributed_joint[OF Pxz] _
     simple_distributed_joint2[OF Pxyz]])
   note simple_distributed_joint2_finite[OF Pxyz, simp]
   show "sigma_finite_measure (count_space (X ` space M))"
@@ -1471,10 +1465,10 @@
   from measurable_comp[OF this measurable_fst]
   have "random_variable (count_space (X ` space M)) X"
     by (simp add: comp_def)
-  then have "simple_function M X"    
+  then have "simple_function M X"
     unfolding simple_function_def by (auto simp: measurable_count_space_eq2)
   then have "simple_distributed M X ?Px"
-    by (rule simple_distributedI) auto
+    by (rule simple_distributedI) (auto simp: measure_nonneg)
   then show "distributed M (count_space (X ` space M)) X ?Px"
     by (rule simple_distributed)
 
@@ -1491,7 +1485,7 @@
     by (auto intro!: ext)
   then show "(\<integral> (x, y, z). ?i x y z \<partial>?P) = (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x)) ` space M. ?j x y z)"
     by (auto intro!: setsum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite setsum.If_cases split_beta')
-qed
+qed (insert Pz Pyz Pxz Pxyz, auto intro: measure_nonneg)
 
 lemma (in information_space) conditional_mutual_information_nonneg:
   assumes X: "simple_function M X" and Y: "simple_function M Y" and Z: "simple_function M Z"
@@ -1501,15 +1495,25 @@
       count_space (X`space M \<times> Y`space M \<times> Z`space M)"
     by (simp add: pair_measure_count_space X Y Z simple_functionD)
   note sf = sigma_finite_measure_count_space_finite[OF simple_functionD(1)]
-  note sd = simple_distributedI[OF _ refl]
+  note sd = simple_distributedI[OF _ _ refl]
   note sp = simple_function_Pair
   show ?thesis
    apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]])
    apply (rule simple_distributed[OF sd[OF X]])
+   apply simp
+   apply simp
    apply (rule simple_distributed[OF sd[OF Z]])
+   apply simp
+   apply simp
    apply (rule simple_distributed_joint[OF sd[OF sp[OF Y Z]]])
+   apply simp
+   apply simp
    apply (rule simple_distributed_joint[OF sd[OF sp[OF X Z]]])
+   apply simp
+   apply simp
    apply (rule simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]])
+   apply simp
+   apply simp
    apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD)
    done
 qed
@@ -1517,8 +1521,8 @@
 subsection \<open>Conditional Entropy\<close>
 
 definition (in prob_space)
-  "conditional_entropy b S T X Y = - (\<integral>(x, y). log b (real_of_ereal (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (x, y)) / 
-    real_of_ereal (RN_deriv T (distr M T Y) y)) \<partial>distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))"
+  "conditional_entropy b S T X Y = - (\<integral>(x, y). log b (enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (x, y)) /
+    enn2real (RN_deriv T (distr M T Y) y)) \<partial>distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))"
 
 abbreviation (in information_space)
   conditional_entropy_Pow ("\<H>'(_ | _')") where
@@ -1527,33 +1531,39 @@
 lemma (in information_space) conditional_entropy_generic_eq:
   fixes Pxy :: "_ \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
-  assumes Py[measurable]: "distributed M T Y Py"
+  assumes Py[measurable]: "distributed M T Y Py" and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
   assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)"
   shows "conditional_entropy b S T X Y = - (\<integral>(x, y). Pxy (x, y) * log b (Pxy (x, y) / Py y) \<partial>(S \<Otimes>\<^sub>M T))"
 proof -
   interpret S: sigma_finite_measure S by fact
   interpret T: sigma_finite_measure T by fact
   interpret ST: pair_sigma_finite S T ..
 
-  have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Pxy x)). Pxy x = real_of_ereal (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) x)"
+  have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel"
+    using Py Py_nn by (intro distributed_real_measurable)
+  have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel"
+    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
+  have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Pxy x = enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) x)"
     unfolding AE_density[OF distributed_borel_measurable, OF Pxy]
     unfolding distributed_distr_eq_density[OF Pxy]
     using distributed_RN_deriv[OF Pxy]
     by auto
   moreover
-  have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ereal (Pxy x)). Py (snd x) = real_of_ereal (RN_deriv T (distr M T Y) (snd x))"
+  have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Py (snd x) = enn2real (RN_deriv T (distr M T Y) (snd x))"
     unfolding AE_density[OF distributed_borel_measurable, OF Pxy]
     unfolding distributed_distr_eq_density[OF Py]
     apply (rule ST.AE_pair_measure)
     apply auto
     using distributed_RN_deriv[OF Py]
     apply auto
-    done    
+    done
   ultimately
   have "conditional_entropy b S T X Y = - (\<integral>x. Pxy x * log b (Pxy x / Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
     unfolding conditional_entropy_def neg_equal_iff_equal
     apply (subst integral_real_density[symmetric])
-    apply (auto simp: distributed_real_AE[OF Pxy] distributed_distr_eq_density[OF Pxy]
+    apply (auto simp: distributed_distr_eq_density[OF Pxy] space_pair_measure
                 intro!: integral_cong_AE)
     done
   then show ?thesis by (simp add: split_beta')
@@ -1563,7 +1573,9 @@
   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
   assumes Py[measurable]: "distributed M T Y Py"
+    and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
   assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)"
   assumes I1: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"
   assumes I2: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))"
   shows "conditional_entropy b S T X Y = entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) - entropy b T Y"
@@ -1572,35 +1584,45 @@
   interpret T: sigma_finite_measure T by fact
   interpret ST: pair_sigma_finite S T ..
 
+  have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel"
+    using Py Py_nn by (intro distributed_real_measurable)
+  have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel"
+    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
   have "entropy b T Y = - (\<integral>y. Py y * log b (Py y) \<partial>T)"
-    by (rule entropy_distr[OF Py])
+    by (rule entropy_distr[OF Py Py_nn])
   also have "\<dots> = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))"
-    using b_gt_1 Py[THEN distributed_real_measurable]
-    by (subst distributed_transform_integral[OF Pxy Py, where T=snd]) (auto intro!: integral_cong)
+    using b_gt_1
+    by (subst distributed_transform_integral[OF Pxy _ Py, where T=snd])
+       (auto intro!: integral_cong simp: space_pair_measure)
   finally have e_eq: "entropy b T Y = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))" .
 
+  have **: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x"
+    by (auto simp: space_pair_measure)
+
   have ae2: "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
-    by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair)
+    by (intro subdensity_real[of snd, OF _ Pxy Py])
+       (auto intro: measurable_Pair simp: space_pair_measure)
   moreover have ae4: "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)"
-    using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable)
-  moreover note ae5 = Pxy[THEN distributed_real_AE]
+    using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'')
   ultimately have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Pxy x \<and> 0 \<le> Py (snd x) \<and>
     (Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Py (snd x)))"
-    by eventually_elim auto
+    using AE_space by eventually_elim (auto simp: space_pair_measure less_le)
   then have ae: "AE x in S \<Otimes>\<^sub>M T.
      Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))"
     by eventually_elim (auto simp: log_simps field_simps b_gt_1)
-  have "conditional_entropy b S T X Y = 
+  have "conditional_entropy b S T X Y =
     - (\<integral>x. Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
-    unfolding conditional_entropy_generic_eq[OF S T Py Pxy] neg_equal_iff_equal
+    unfolding conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] neg_equal_iff_equal
     apply (intro integral_cong_AE)
     using ae
     apply auto
     done
   also have "\<dots> = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T)) - - (\<integral>x.  Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
     by (simp add: integral_diff[OF I1 I2])
-  finally show ?thesis 
-    unfolding conditional_entropy_generic_eq[OF S T Py Pxy] entropy_distr[OF Pxy] e_eq
+  finally show ?thesis
+    using conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified]
+      entropy_distr[OF Pxy **, simplified] e_eq
     by (simp add: split_beta')
 qed
 
@@ -1612,9 +1634,9 @@
     (is "?P = ?C") using X Y by (simp add: simple_functionD pair_measure_count_space)
   show ?thesis
     by (rule conditional_entropy_eq_entropy sigma_finite_measure_count_space_finite
-                 simple_functionD  X Y simple_distributed simple_distributedI[OF _ refl]
-                 simple_distributed_joint simple_function_Pair integrable_count_space)+
-       (auto simp: \<open>?P = ?C\<close> intro!: integrable_count_space simple_functionD  X Y)
+             simple_functionD  X Y simple_distributed simple_distributedI[OF _ _ refl]
+             simple_distributed_joint simple_function_Pair integrable_count_space measure_nonneg)+
+       (auto simp: \<open>?P = ?C\<close> measure_nonneg intro!: integrable_count_space simple_functionD  X Y)
 qed
 
 lemma (in information_space) conditional_entropy_eq:
@@ -1622,7 +1644,7 @@
   assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"
     shows "\<H>(X | Y) = - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))"
 proof (subst conditional_entropy_generic_eq[OF _ _
-  simple_distributed[OF Y] simple_distributed_joint[OF XY]])
+  simple_distributed[OF Y] _ simple_distributed_joint[OF XY]])
   have "finite ((\<lambda>x. (X x, Y x))`space M)"
     using XY unfolding simple_distributed_def by auto
   from finite_imageI[OF this, of fst]
@@ -1643,7 +1665,7 @@
   from Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) =
     - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))"
     by (auto intro!: setsum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite eq setsum.If_cases split_beta')
-qed
+qed (insert Y XY, auto)
 
 lemma (in information_space) conditional_mutual_information_eq_conditional_entropy:
   assumes X: "simple_function M X" and Y: "simple_function M Y"
@@ -1657,11 +1679,11 @@
   note XY = simple_function_Pair[OF X Y]
   note XXY = simple_function_Pair[OF X XY]
   have Py: "simple_distributed M Y Py"
-    using Y by (rule simple_distributedI) (auto simp: Py_def)
+    using Y by (rule simple_distributedI) (auto simp: Py_def measure_nonneg)
   have Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"
-    using XY by (rule simple_distributedI) (auto simp: Pxy_def)
+    using XY by (rule simple_distributedI) (auto simp: Pxy_def measure_nonneg)
   have Pxxy: "simple_distributed M (\<lambda>x. (X x, X x, Y x)) Pxxy"
-    using XXY by (rule simple_distributedI) (auto simp: Pxxy_def)
+    using XXY by (rule simple_distributedI) (auto simp: Pxxy_def measure_nonneg)
   have eq: "(\<lambda>x. (X x, X x, Y x)) ` space M = (\<lambda>(x, y). (x, x, y)) ` (\<lambda>x. (X x, Y x)) ` space M"
     by auto
   have inj: "\<And>A. inj_on (\<lambda>(x, y). (x, x, y)) A"
@@ -1669,14 +1691,17 @@
   have Pxxy_eq: "\<And>x y. Pxxy (x, x, y) = Pxy (x, y)"
     by (auto simp: Pxxy_def Pxy_def intro!: arg_cong[where f=prob])
   have "AE x in count_space ((\<lambda>x. (X x, Y x))`space M). Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
-    by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]]) (auto intro: measurable_Pair)
+    using Py Pxy
+    by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]])
+       (auto intro: measurable_Pair simp: AE_count_space)
   then show ?thesis
     apply (subst conditional_mutual_information_eq[OF Py Pxy Pxy Pxxy])
     apply (subst conditional_entropy_eq[OF Py Pxy])
     apply (auto intro!: setsum.cong simp: Pxxy_eq setsum_negf[symmetric] eq setsum.reindex[OF inj]
                 log_simps zero_less_mult_iff zero_le_mult_iff field_simps mult_less_0_iff AE_count_space)
-    using Py[THEN simple_distributed, THEN distributed_real_AE] Pxy[THEN simple_distributed, THEN distributed_real_AE]
-  apply (auto simp add: not_le[symmetric] AE_count_space)
+    using Py[THEN simple_distributed] Pxy[THEN simple_distributed]
+    apply (auto simp add: not_le AE_count_space less_le antisym
+      simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy])
     done
 qed
 
@@ -1690,25 +1715,36 @@
 lemma (in information_space) mutual_information_eq_entropy_conditional_entropy_distr:
   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
-  assumes Px[measurable]: "distributed M S X Px" and Py[measurable]: "distributed M T Y Py"
-  assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+  assumes Px[measurable]: "distributed M S X Px"
+    and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
+    and Py[measurable]: "distributed M T Y Py"
+    and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
+    and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)"
   assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))"
   assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))"
   assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"
   shows  "mutual_information b S T X Y = entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
 proof -
+  have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel"
+    using Px Px_nn by (intro distributed_real_measurable)
+  have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel"
+    using Py Py_nn by (intro distributed_real_measurable)
+  have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel"
+    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
+
   have X: "entropy b S X = - (\<integral>x. Pxy x * log b (Px (fst x)) \<partial>(S \<Otimes>\<^sub>M T))"
-    using b_gt_1 Px[THEN distributed_real_measurable]
-    apply (subst entropy_distr[OF Px])
-    apply (subst distributed_transform_integral[OF Pxy Px, where T=fst])
-    apply (auto intro!: integral_cong)
+    using b_gt_1
+    apply (subst entropy_distr[OF Px Px_nn], simp)
+    apply (subst distributed_transform_integral[OF Pxy _ Px, where T=fst])
+    apply (auto intro!: integral_cong simp: space_pair_measure)
     done
 
   have Y: "entropy b T Y = - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))"
-    using b_gt_1 Py[THEN distributed_real_measurable]
-    apply (subst entropy_distr[OF Py])
-    apply (subst distributed_transform_integral[OF Pxy Py, where T=snd])
-    apply (auto intro!: integral_cong)
+    using b_gt_1
+    apply (subst entropy_distr[OF Py Py_nn], simp)
+    apply (subst distributed_transform_integral[OF Pxy _ Py, where T=snd])
+    apply (auto intro!: integral_cong simp: space_pair_measure)
     done
 
   interpret S: sigma_finite_measure S by fact
@@ -1717,27 +1753,27 @@
   have ST: "sigma_finite_measure (S \<Otimes>\<^sub>M T)" ..
 
   have XY: "entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T))"
-    by (subst entropy_distr[OF Pxy]) (auto intro!: integral_cong)
-  
+    by (subst entropy_distr[OF Pxy]) (auto intro!: integral_cong simp: space_pair_measure)
+
   have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0"
-    by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair)
+    by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair simp: space_pair_measure)
   moreover have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"
-    by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair)
+    by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair simp: space_pair_measure)
   moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Px (fst x)"
-    using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'' dest: distributed_real_AE distributed_real_measurable)
+    using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'')
   moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)"
-    using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable)
-  moreover note Pxy[THEN distributed_real_AE]
-  ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) = 
+    using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'')
+  ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) =
     Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"
     (is "AE x in _. ?f x = ?g x")
+    using AE_space
   proof eventually_elim
     case (elim x)
     show ?case
     proof cases
       assume "Pxy x \<noteq> 0"
       with elim have "0 < Px (fst x)" "0 < Py (snd x)" "0 < Pxy x"
-        by auto
+        by (auto simp: space_pair_measure less_le)
       then show ?thesis
         using b_gt_1 by (simp add: log_simps less_imp_le field_simps)
     qed simp
@@ -1754,15 +1790,18 @@
   also have "\<dots> = integral\<^sup>L (S \<Otimes>\<^sub>M T) ?g"
     using \<open>AE x in _. ?f x = ?g x\<close> by (intro integral_cong_AE) auto
   also have "\<dots> = mutual_information b S T X Y"
-    by (rule mutual_information_distr[OF S T Px Py Pxy, symmetric])
+    by (rule mutual_information_distr[OF S T Px _ Py _ Pxy _ , symmetric])
+       (auto simp: space_pair_measure)
   finally show ?thesis ..
 qed
 
 lemma (in information_space) mutual_information_eq_entropy_conditional_entropy':
   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
-  assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py"
+  assumes Px: "distributed M S X Px" "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x"
+    and Py: "distributed M T Y Py" "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x"
   assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy"
+    "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x"
   assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))"
   assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))"
   assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"
@@ -1770,27 +1809,30 @@
   using
     mutual_information_eq_entropy_conditional_entropy_distr[OF S T Px Py Pxy Ix Iy Ixy]
     conditional_entropy_eq_entropy[OF S T Py Pxy Ixy Iy]
-  by simp
+  by (simp add: space_pair_measure)
 
 lemma (in information_space) mutual_information_eq_entropy_conditional_entropy:
   assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y"
   shows  "\<I>(X ; Y) = \<H>(X) - \<H>(X | Y)"
 proof -
   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
-    using sf_X by (rule simple_distributedI) auto
+    using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg)
   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
-    using sf_Y by (rule simple_distributedI) auto
+    using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg)
   have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))"
     using sf_X sf_Y by (rule simple_function_Pair)
   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
-    by (rule simple_distributedI) auto
+    by (rule simple_distributedI) (auto simp: measure_nonneg)
   from simple_distributed_joint_finite[OF this, simp]
   have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)"
     by (simp add: pair_measure_count_space)
 
   have "\<I>(X ; Y) = \<H>(X) + \<H>(Y) - entropy b (count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x))"
-    using sigma_finite_measure_count_space_finite sigma_finite_measure_count_space_finite simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]
-    by (rule mutual_information_eq_entropy_conditional_entropy_distr) (auto simp: eq integrable_count_space)
+    using sigma_finite_measure_count_space_finite
+      sigma_finite_measure_count_space_finite
+      simple_distributed[OF X] measure_nonneg simple_distributed[OF Y] measure_nonneg simple_distributed_joint[OF XY]
+    by (rule mutual_information_eq_entropy_conditional_entropy_distr)
+       (auto simp: eq integrable_count_space measure_nonneg)
   then show ?thesis
     unfolding conditional_entropy_eq_entropy_simple[OF sf_X sf_Y] by simp
 qed
@@ -1800,22 +1842,22 @@
   shows  "0 \<le> \<I>(X ; Y)"
 proof -
   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
-    using sf_X by (rule simple_distributedI) auto
+    using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg)
   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
-    using sf_Y by (rule simple_distributedI) auto
+    using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg)
 
   have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))"
     using sf_X sf_Y by (rule simple_function_Pair)
   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
-    by (rule simple_distributedI) auto
+    by (rule simple_distributedI) (auto simp: measure_nonneg)
 
   from simple_distributed_joint_finite[OF this, simp]
   have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)"
     by (simp add: pair_measure_count_space)
 
   show ?thesis
-    by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]])
-       (simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite)
+    by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]])
+       (simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite measure_nonneg)
 qed
 
 lemma (in information_space) conditional_entropy_less_eq_entropy:
@@ -1827,7 +1869,7 @@
   finally show ?thesis by auto
 qed
 
-lemma (in information_space) 
+lemma (in information_space)
   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
   assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
   assumes Px: "finite_entropy S X Px" and Py: "finite_entropy T Y Py"
@@ -1835,14 +1877,15 @@
   shows "conditional_entropy b S T X Y \<le> entropy b S X"
 proof -
 
-  have "0 \<le> mutual_information b S T X Y" 
+  have "0 \<le> mutual_information b S T X Y"
     by (rule mutual_information_nonneg') fact+
   also have "\<dots> = entropy b S X - conditional_entropy b S T X Y"
     apply (rule mutual_information_eq_entropy_conditional_entropy')
     using assms
     by (auto intro!: finite_entropy_integrable finite_entropy_distributed
       finite_entropy_integrable_transform[OF Px]
-      finite_entropy_integrable_transform[OF Py])
+      finite_entropy_integrable_transform[OF Py]
+      intro: finite_entropy_nn)
   finally show ?thesis by auto
 qed
 
@@ -1850,8 +1893,8 @@
   assumes X: "simple_function M X" and Y: "simple_function M Y"
   shows  "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)"
 proof -
-  note XY = simple_distributedI[OF simple_function_Pair[OF X Y] refl]
-  note YX = simple_distributedI[OF simple_function_Pair[OF Y X] refl]
+  note XY = simple_distributedI[OF simple_function_Pair[OF X Y] measure_nonneg refl]
+  note YX = simple_distributedI[OF simple_function_Pair[OF Y X] measure_nonneg refl]
   note simple_distributed_joint_finite[OF this, simp]
   let ?f = "\<lambda>x. prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)"
   let ?g = "\<lambda>x. prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M)"
@@ -1865,7 +1908,7 @@
   also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))"
     by (subst entropy_distr[OF simple_distributed_joint[OF YX]])
        (auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite
-             cong del: setsum.cong  intro!: setsum.mono_neutral_left)
+             cong del: setsum.cong  intro!: setsum.mono_neutral_left measure_nonneg)
   finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" .
   then show ?thesis
     unfolding conditional_entropy_eq_entropy_simple[OF Y X] by simp
@@ -1875,14 +1918,14 @@
   assumes X: "simple_function M X"
   shows "\<H>(X) = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)"
 proof -
-  note fX = simple_function_compose[OF X, of f]  
+  note fX = simple_function_compose[OF X, of f]
   have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto
   have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A"
     by (auto simp: inj_on_def)
   show ?thesis
     apply (subst entropy_chain_rule[symmetric, OF fX X])
-    apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] refl]])
-    apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]])
+    apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] measure_nonneg refl]])
+    apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]])
     unfolding eq
     apply (subst setsum.reindex[OF inj])
     apply (auto intro!: setsum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"])
@@ -1908,9 +1951,9 @@
     using X by auto
   have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))"
     unfolding o_assoc
-    apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]])
+    apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]])
     apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_compose[OF X]], where f="\<lambda>x. prob (X -` {x} \<inter> space M)"])
-    apply (auto intro!: setsum.cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def)
+    apply (auto intro!: setsum.cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def measure_nonneg)
     done
   also have "... \<le> \<H>(f \<circ> X)"
     using entropy_data_processing[OF sf] .