doc-src/AxClass/Group/document/Semigroups.tex
changeset 17175 1eced27ee0e1
parent 17133 096792bdc58e
child 17181 5f42dd5e6570
--- a/doc-src/AxClass/Group/document/Semigroups.tex	Sun Aug 28 19:42:10 2005 +0200
+++ b/doc-src/AxClass/Group/document/Semigroups.tex	Sun Aug 28 19:42:19 2005 +0200
@@ -1,25 +1,24 @@
 %
 \begin{isabellebody}%
 \def\isabellecontext{Semigroups}%
-\isamarkuptrue%
 %
 \isamarkupheader{Semigroups%
 }
+\isamarkuptrue%
 %
 \isadelimtheory
 %
 \endisadelimtheory
 %
 \isatagtheory
-\isamarkupfalse%
-\isacommand{theory}\ Semigroups\ \isakeyword{imports}\ Main\ \isakeyword{begin}%
+\isacommand{theory}\isamarkupfalse%
+\ Semigroups\ \isakeyword{imports}\ Main\ \isakeyword{begin}%
 \endisatagtheory
 {\isafoldtheory}%
 %
 \isadelimtheory
 %
 \endisadelimtheory
-\isamarkuptrue%
 %
 \begin{isamarkuptext}%
 \medskip\noindent An axiomatic type class is simply a class of types
@@ -33,13 +32,13 @@
   We illustrate these basic concepts by the following formulation of
   semigroups.%
 \end{isamarkuptext}%
-\isamarkupfalse%
-\isacommand{consts}\isanewline
-\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
-\isamarkupfalse%
-\isacommand{axclass}\ semigroup\ {\isasymsubseteq}\ type\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isamarkuptrue%
-%
+\isamarkuptrue%
+\isacommand{consts}\isamarkupfalse%
+\isanewline
+\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymodot}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isacommand{axclass}\isamarkupfalse%
+\ semigroup\ {\isasymsubseteq}\ type\isanewline
+\ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}%
 \begin{isamarkuptext}%
 \noindent Above we have first declared a polymorphic constant \isa{{\isasymodot}\ {\isasymColon}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} and then defined the class \isa{semigroup} of
   all types \isa{{\isasymtau}} such that \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is indeed an
@@ -55,25 +54,26 @@
   Below, class \isa{plus{\isacharunderscore}semigroup} represents semigroups \isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymoplus}\isactrlsup {\isasymtau}{\isacharparenright}}, while the original \isa{semigroup} would
   correspond to semigroups of the form \isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymodot}\isactrlsup {\isasymtau}{\isacharparenright}}.%
 \end{isamarkuptext}%
-\isamarkupfalse%
-\isacommand{consts}\isanewline
-\ \ plus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymoplus}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
-\isamarkupfalse%
-\isacommand{axclass}\ plus{\isacharunderscore}semigroup\ {\isasymsubseteq}\ type\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymoplus}\ y{\isacharparenright}\ {\isasymoplus}\ z\ {\isacharequal}\ x\ {\isasymoplus}\ {\isacharparenleft}y\ {\isasymoplus}\ z{\isacharparenright}{\isachardoublequote}\isamarkuptrue%
-%
+\isamarkuptrue%
+\isacommand{consts}\isamarkupfalse%
+\isanewline
+\ \ plus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymoplus}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isacommand{axclass}\isamarkupfalse%
+\ plus{\isacharunderscore}semigroup\ {\isasymsubseteq}\ type\isanewline
+\ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymoplus}\ y{\isacharparenright}\ {\isasymoplus}\ z\ {\isacharequal}\ x\ {\isasymoplus}\ {\isacharparenleft}y\ {\isasymoplus}\ z{\isacharparenright}{\isachardoublequoteclose}%
 \begin{isamarkuptext}%
 \noindent Even if classes \isa{plus{\isacharunderscore}semigroup} and \isa{semigroup} both represent semigroups in a sense, they are certainly
   not quite the same.%
 \end{isamarkuptext}%
+\isamarkuptrue%
 %
 \isadelimtheory
 %
 \endisadelimtheory
 %
 \isatagtheory
-\isamarkupfalse%
-\isacommand{end}%
+\isacommand{end}\isamarkupfalse%
+%
 \endisatagtheory
 {\isafoldtheory}%
 %