src/HOL/Tools/Meson/meson_clausify.ML
changeset 39940 1f01c9b2b76b
parent 39932 acde1b606b0e
child 39941 02fcd9cd1eac
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Meson/meson_clausify.ML	Mon Oct 04 21:37:42 2010 +0200
@@ -0,0 +1,376 @@
+(*  Title:      HOL/Tools/Sledgehammer/meson_clausify.ML
+    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Transformation of axiom rules (elim/intro/etc) into CNF forms.
+*)
+
+signature MESON_CLAUSIFY =
+sig
+  val new_skolem_var_prefix : string
+  val extensionalize_theorem : thm -> thm
+  val introduce_combinators_in_cterm : cterm -> thm
+  val introduce_combinators_in_theorem : thm -> thm
+  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
+  val cluster_of_zapped_var_name : string -> (int * (int * int)) * bool
+  val cnf_axiom :
+    Proof.context -> bool -> int -> thm -> (thm * term) option * thm list
+  val meson_general_tac : Proof.context -> thm list -> int -> tactic
+  val setup: theory -> theory
+end;
+
+structure Meson_Clausify : MESON_CLAUSIFY =
+struct
+
+(* the extra "?" helps prevent clashes *)
+val new_skolem_var_prefix = "?SK"
+val new_nonskolem_var_prefix = "?V"
+
+(**** Transformation of Elimination Rules into First-Order Formulas****)
+
+val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
+val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
+
+(* Converts an elim-rule into an equivalent theorem that does not have the
+   predicate variable. Leaves other theorems unchanged. We simply instantiate
+   the conclusion variable to False. (Cf. "transform_elim_term" in
+   "Sledgehammer_Util".) *)
+fun transform_elim_theorem th =
+  case concl_of th of    (*conclusion variable*)
+       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
+    | v as Var(_, @{typ prop}) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
+    | _ => th
+
+
+(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
+
+fun mk_old_skolem_term_wrapper t =
+  let val T = fastype_of t in
+    Const (@{const_name skolem}, T --> T) $ t
+  end
+
+fun beta_eta_in_abs_body (Abs (s, T, t')) = Abs (s, T, beta_eta_in_abs_body t')
+  | beta_eta_in_abs_body t = Envir.beta_eta_contract t
+
+(*Traverse a theorem, accumulating Skolem function definitions.*)
+fun old_skolem_defs th =
+  let
+    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
+        (*Existential: declare a Skolem function, then insert into body and continue*)
+        let
+          val args = OldTerm.term_frees body
+          (* Forms a lambda-abstraction over the formal parameters *)
+          val rhs =
+            list_abs_free (map dest_Free args,
+                           HOLogic.choice_const T $ beta_eta_in_abs_body body)
+            |> mk_old_skolem_term_wrapper
+          val comb = list_comb (rhs, args)
+        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
+      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
+        (*Universal quant: insert a free variable into body and continue*)
+        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
+        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
+      | dec_sko (@{const conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
+      | dec_sko (@{const disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
+      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
+      | dec_sko _ rhss = rhss
+  in  dec_sko (prop_of th) []  end;
+
+
+(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
+
+val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
+
+(* Removes the lambdas from an equation of the form "t = (%x. u)".
+   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
+fun extensionalize_theorem th =
+  case prop_of th of
+    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
+         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
+  | _ => th
+
+fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
+  | is_quasi_lambda_free (t1 $ t2) =
+    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
+  | is_quasi_lambda_free (Abs _) = false
+  | is_quasi_lambda_free _ = true
+
+val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
+val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
+val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
+
+(* FIXME: Requires more use of cterm constructors. *)
+fun abstract ct =
+  let
+      val thy = theory_of_cterm ct
+      val Abs(x,_,body) = term_of ct
+      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
+      val cxT = ctyp_of thy xT
+      val cbodyT = ctyp_of thy bodyT
+      fun makeK () =
+        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
+                     @{thm abs_K}
+  in
+      case body of
+          Const _ => makeK()
+        | Free _ => makeK()
+        | Var _ => makeK()  (*though Var isn't expected*)
+        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
+        | rator$rand =>
+            if loose_bvar1 (rator,0) then (*C or S*)
+               if loose_bvar1 (rand,0) then (*S*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val crand = cterm_of thy (Abs(x,xT,rand))
+                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
+                 in
+                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
+                 end
+               else (*C*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
+                 in
+                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
+                 end
+            else if loose_bvar1 (rand,0) then (*B or eta*)
+               if rand = Bound 0 then Thm.eta_conversion ct
+               else (*B*)
+                 let val crand = cterm_of thy (Abs(x,xT,rand))
+                     val crator = cterm_of thy rator
+                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
+                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
+            else makeK()
+        | _ => raise Fail "abstract: Bad term"
+  end;
+
+(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
+fun introduce_combinators_in_cterm ct =
+  if is_quasi_lambda_free (term_of ct) then
+    Thm.reflexive ct
+  else case term_of ct of
+    Abs _ =>
+    let
+      val (cv, cta) = Thm.dest_abs NONE ct
+      val (v, _) = dest_Free (term_of cv)
+      val u_th = introduce_combinators_in_cterm cta
+      val cu = Thm.rhs_of u_th
+      val comb_eq = abstract (Thm.cabs cv cu)
+    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
+  | _ $ _ =>
+    let val (ct1, ct2) = Thm.dest_comb ct in
+        Thm.combination (introduce_combinators_in_cterm ct1)
+                        (introduce_combinators_in_cterm ct2)
+    end
+
+fun introduce_combinators_in_theorem th =
+  if is_quasi_lambda_free (prop_of th) then
+    th
+  else
+    let
+      val th = Drule.eta_contraction_rule th
+      val eqth = introduce_combinators_in_cterm (cprop_of th)
+    in Thm.equal_elim eqth th end
+    handle THM (msg, _, _) =>
+           (warning ("Error in the combinator translation of " ^
+                     Display.string_of_thm_without_context th ^
+                     "\nException message: " ^ msg ^ ".");
+            (* A type variable of sort "{}" will make abstraction fail. *)
+            TrueI)
+
+(*cterms are used throughout for efficiency*)
+val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
+
+(*Given an abstraction over n variables, replace the bound variables by free
+  ones. Return the body, along with the list of free variables.*)
+fun c_variant_abs_multi (ct0, vars) =
+      let val (cv,ct) = Thm.dest_abs NONE ct0
+      in  c_variant_abs_multi (ct, cv::vars)  end
+      handle CTERM _ => (ct0, rev vars);
+
+val skolem_def_raw = @{thms skolem_def_raw}
+
+(* Given the definition of a Skolem function, return a theorem to replace
+   an existential formula by a use of that function.
+   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
+fun old_skolem_theorem_from_def thy rhs0 =
+  let
+    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
+    val rhs' = rhs |> Thm.dest_comb |> snd
+    val (ch, frees) = c_variant_abs_multi (rhs', [])
+    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
+    val T =
+      case hilbert of
+        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
+      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
+                         [hilbert])
+    val cex = cterm_of thy (HOLogic.exists_const T)
+    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
+    val conc =
+      Drule.list_comb (rhs, frees)
+      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
+    fun tacf [prem] =
+      rewrite_goals_tac skolem_def_raw
+      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
+  in
+    Goal.prove_internal [ex_tm] conc tacf
+    |> forall_intr_list frees
+    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
+    |> Thm.varifyT_global
+  end
+
+fun to_definitional_cnf_with_quantifiers thy th =
+  let
+    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
+    val eqth = eqth RS @{thm eq_reflection}
+    val eqth = eqth RS @{thm TruepropI}
+  in Thm.equal_elim eqth th end
+
+fun zapped_var_name ((ax_no, cluster_no), skolem) index_no s =
+  (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^
+  "_" ^ string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^
+  string_of_int index_no ^ "_" ^ s
+
+fun cluster_of_zapped_var_name s =
+  let val get_int = the o Int.fromString o nth (space_explode "_" s) in
+    ((get_int 1, (get_int 2, get_int 3)),
+     String.isPrefix new_skolem_var_prefix s)
+  end
+
+fun zap (cluster as (cluster_no, cluster_skolem)) index_no pos ct =
+  ct
+  |> (case term_of ct of
+        Const (s, _) $ Abs (s', _, _) =>
+        if s = @{const_name all} orelse s = @{const_name All} orelse
+           s = @{const_name Ex} then
+          let
+            val skolem = (pos = (s = @{const_name Ex}))
+            val (cluster, index_no) =
+              if skolem = cluster_skolem then (cluster, index_no)
+              else ((cluster_no ||> cluster_skolem ? Integer.add 1, skolem), 0)
+          in
+            Thm.dest_comb #> snd
+            #> Thm.dest_abs (SOME (zapped_var_name cluster index_no s'))
+            #> snd #> zap cluster (index_no + 1) pos
+          end
+        else
+          Conv.all_conv
+      | Const (s, _) $ _ $ _ =>
+        if s = @{const_name "==>"} orelse s = @{const_name implies} then
+          Conv.combination_conv (Conv.arg_conv (zap cluster index_no (not pos)))
+                                (zap cluster index_no pos)
+        else if s = @{const_name conj} orelse s = @{const_name disj} then
+          Conv.combination_conv (Conv.arg_conv (zap cluster index_no pos))
+                                (zap cluster index_no pos)
+        else
+          Conv.all_conv
+      | Const (s, _) $ _ =>
+        if s = @{const_name Trueprop} then
+          Conv.arg_conv (zap cluster index_no pos)
+        else if s = @{const_name Not} then
+          Conv.arg_conv (zap cluster index_no (not pos))
+        else
+          Conv.all_conv
+      | _ => Conv.all_conv)
+
+fun ss_only ths = MetaSimplifier.clear_ss HOL_basic_ss addsimps ths
+
+val no_choice =
+  @{prop "ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"}
+  |> Logic.varify_global
+  |> Skip_Proof.make_thm @{theory}
+
+(* Converts an Isabelle theorem into NNF. *)
+fun nnf_axiom choice_ths new_skolemizer ax_no th ctxt =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val th =
+      th |> transform_elim_theorem
+         |> zero_var_indexes
+         |> new_skolemizer ? forall_intr_vars
+    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
+    val th = th |> Conv.fconv_rule Object_Logic.atomize
+                |> extensionalize_theorem
+                |> Meson.make_nnf ctxt
+  in
+    if new_skolemizer then
+      let
+        fun skolemize choice_ths =
+          Meson.skolemize_with_choice_thms ctxt choice_ths
+          #> simplify (ss_only @{thms all_simps[symmetric]})
+        val pull_out =
+          simplify (ss_only @{thms all_simps[symmetric] ex_simps[symmetric]})
+        val (discharger_th, fully_skolemized_th) =
+          if null choice_ths then
+            th |> `I |>> pull_out ||> skolemize [no_choice]
+          else
+            th |> skolemize choice_ths |> `I
+        val t =
+          fully_skolemized_th |> cprop_of
+          |> zap ((ax_no, 0), true) 0 true |> Drule.export_without_context
+          |> cprop_of |> Thm.dest_equals |> snd |> term_of
+      in
+        if exists_subterm (fn Var ((s, _), _) =>
+                              String.isPrefix new_skolem_var_prefix s
+                            | _ => false) t then
+          let
+            val (ct, ctxt) =
+              Variable.import_terms true [t] ctxt
+              |>> the_single |>> cterm_of thy
+          in (SOME (discharger_th, ct), Thm.assume ct, ctxt) end
+       else
+         (NONE, th, ctxt)
+      end
+    else
+      (NONE, th, ctxt)
+  end
+
+(* Convert a theorem to CNF, with additional premises due to skolemization. *)
+fun cnf_axiom ctxt0 new_skolemizer ax_no th =
+  let
+    val thy = ProofContext.theory_of ctxt0
+    val choice_ths = Meson_Choices.get ctxt0
+    val (opt, nnf_th, ctxt) = nnf_axiom choice_ths new_skolemizer ax_no th ctxt0
+    fun clausify th =
+      Meson.make_cnf (if new_skolemizer then
+                        []
+                      else
+                        map (old_skolem_theorem_from_def thy)
+                            (old_skolem_defs th)) th ctxt
+    val (cnf_ths, ctxt) =
+      clausify nnf_th
+      |> (fn ([], _) =>
+             clausify (to_definitional_cnf_with_quantifiers thy nnf_th)
+           | p => p)
+    fun intr_imp ct th =
+      Thm.instantiate ([], map (pairself (cterm_of @{theory}))
+                               [(Var (("i", 1), @{typ nat}),
+                                 HOLogic.mk_nat ax_no)])
+                      @{thm skolem_COMBK_D}
+      RS Thm.implies_intr ct th
+  in
+    (opt |> Option.map (I #>> singleton (Variable.export ctxt ctxt0)
+                        ##> (term_of #> HOLogic.dest_Trueprop
+                             #> singleton (Variable.export_terms ctxt ctxt0))),
+     cnf_ths |> map (introduce_combinators_in_theorem
+                     #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I))
+             |> Variable.export ctxt ctxt0
+             |> Meson.finish_cnf
+             |> map Thm.close_derivation)
+  end
+  handle THM _ => (NONE, [])
+
+fun meson_general_tac ctxt ths =
+  let val ctxt = Classical.put_claset HOL_cs ctxt in
+    Meson.meson_tac ctxt (maps (snd o cnf_axiom ctxt false 0) ths)
+  end
+
+val setup =
+  Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
+     SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
+     "MESON resolution proof procedure"
+
+end;