src/HOL/Partial_Function.thy
changeset 73411 1f1366966296
parent 69913 ca515cf61651
child 75669 43f5dfb7fa35
--- a/src/HOL/Partial_Function.thy	Thu Mar 11 07:05:29 2021 +0000
+++ b/src/HOL/Partial_Function.thy	Thu Mar 11 07:05:38 2021 +0000
@@ -35,13 +35,13 @@
       have "\<Squnion>(insert x A) \<le> \<Squnion>A" using chain
         by(rule ccpo_Sup_least)(auto simp add: True intro: ccpo_Sup_upper[OF chain'])
       hence "\<Squnion>(insert x A) = \<Squnion>A"
-        by(rule antisym)(blast intro: ccpo_Sup_upper[OF chain] ccpo_Sup_least[OF chain'])
+        by(rule order.antisym)(blast intro: ccpo_Sup_upper[OF chain] ccpo_Sup_least[OF chain'])
       with \<open>\<Squnion>A \<in> A\<close> show ?thesis by simp
     next
       case False
       with chainD[OF chain, of x "\<Squnion>A"] \<open>\<Squnion>A \<in> A\<close>
       have "\<Squnion>(insert x A) = x"
-        by(auto intro: antisym ccpo_Sup_least[OF chain] order_trans[OF ccpo_Sup_upper[OF chain']] ccpo_Sup_upper[OF chain])
+        by(auto intro: order.antisym ccpo_Sup_least[OF chain] order_trans[OF ccpo_Sup_upper[OF chain']] ccpo_Sup_upper[OF chain])
       thus ?thesis by simp
     qed
   qed