src/HOL/Algebra/Exact_Sequence.thy
changeset 68578 1f86a092655b
child 68582 b9b9e2985878
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Exact_Sequence.thy	Mon Jul 02 22:40:25 2018 +0100
@@ -0,0 +1,179 @@
+(* ************************************************************************** *)
+(* Title:      Exact_Sequence.thy                                             *)
+(* Author:     Martin Baillon                                                 *)
+(* ************************************************************************** *)
+
+theory Exact_Sequence
+  imports Group Coset Solvable_Groups
+    
+begin
+
+section \<open>Exact Sequences\<close>
+
+
+subsection \<open>Definitions\<close>
+
+inductive exact_seq :: "'a monoid list \<times> ('a \<Rightarrow> 'a) list \<Rightarrow> bool"  where
+unity:     " group_hom G1 G2 f \<Longrightarrow> exact_seq ([G2, G1], [f])" |
+extension: "\<lbrakk> exact_seq ((G # K # l), (g # q)); group H ; h \<in> hom G H ;
+              kernel G H h = image g (carrier K) \<rbrakk> \<Longrightarrow> exact_seq (H # G # K # l, h # g # q)"
+
+abbreviation exact_seq_arrow ::
+  "('a \<Rightarrow> 'a) \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list \<Rightarrow>  'a monoid \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list"
+  ("(3_ / \<longlongrightarrow>\<index> _)" [1000, 60])
+  where "exact_seq_arrow  f t G \<equiv> (G # (fst t), f # (snd t))"
+
+
+subsection \<open>Basic Properties\<close>
+
+lemma exact_seq_length1: "exact_seq t \<Longrightarrow> length (fst t) = Suc (length (snd t))"
+  by (induct t rule: exact_seq.induct) auto
+
+lemma exact_seq_length2: "exact_seq t \<Longrightarrow> length (snd t) \<ge> Suc 0"
+  by (induct t rule: exact_seq.induct) auto
+
+lemma dropped_seq_is_exact_seq:
+  assumes "exact_seq (G, F)" and "(i :: nat) < length F"
+  shows "exact_seq (drop i G, drop i F)"
+proof-
+  { fix t i assume "exact_seq t" "i < length (snd t)"
+    hence "exact_seq (drop i (fst t), drop i (snd t))"
+    proof (induction arbitrary: i)
+      case (unity G1 G2 f) thus ?case
+        by (simp add: exact_seq.unity)
+    next
+      case (extension G K l g q H h) show ?case
+      proof (cases)
+        assume "i = 0" thus ?case
+          using exact_seq.extension[OF extension.hyps] by simp
+      next
+        assume "i \<noteq> 0" hence "i \<ge> Suc 0" by simp
+        then obtain k where "k < length (snd (G # K # l, g # q))" "i = Suc k"
+          using Suc_le_D extension.prems by auto
+        thus ?thesis using extension.IH by simp 
+      qed
+    qed }
+
+  thus ?thesis using assms by auto
+qed
+
+lemma truncated_seq_is_exact_seq:
+  assumes "exact_seq (l, q)" and "length l \<ge> 3"
+  shows "exact_seq (tl l, tl q)"
+  using exact_seq_length1[OF assms(1)] dropped_seq_is_exact_seq[OF assms(1), of "Suc 0"]
+        exact_seq_length2[OF assms(1)] assms(2) by (simp add: drop_Suc)
+
+lemma exact_seq_imp_exact_hom:
+   assumes "exact_seq (G1 # l,q) \<longlongrightarrow>\<^bsub>g1\<^esub> G2 \<longlongrightarrow>\<^bsub>g2\<^esub> G3"
+   shows "g1 ` (carrier G1) = kernel G2 G3 g2"
+proof-
+  { fix t assume "exact_seq t" and "length (fst t) \<ge> 3 \<and> length (snd t) \<ge> 2"
+    hence "(hd (tl (snd t))) ` (carrier (hd (tl (tl (fst t))))) =
+            kernel (hd (tl (fst t))) (hd (fst t)) (hd (snd t))"
+    proof (induction)
+      case (unity G1 G2 f)
+      then show ?case by auto
+    next
+      case (extension G l g q H h)
+      then show ?case by auto
+    qed }
+  thus ?thesis using assms by fastforce
+qed
+
+lemma exact_seq_imp_exact_hom_arbitrary:
+   assumes "exact_seq (G, F)"
+     and "Suc i < length F"
+   shows "(F ! (Suc i)) ` (carrier (G ! (Suc (Suc i)))) = kernel (G ! (Suc i)) (G ! i) (F ! i)"
+proof -
+  have "length (drop i F) \<ge> 2" "length (drop i G) \<ge> 3"
+    using assms(2) exact_seq_length1[OF assms(1)] by auto
+  then obtain l q
+    where "drop i G = (G ! i) # (G ! (Suc i)) # (G ! (Suc (Suc i))) # l"
+     and  "drop i F = (F ! i) # (F ! (Suc i)) # q"
+    by (metis Cons_nth_drop_Suc Suc_less_eq assms exact_seq_length1 fst_conv
+        le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
+  thus ?thesis
+  using dropped_seq_is_exact_seq[OF assms(1), of i] assms(2)
+        exact_seq_imp_exact_hom[of "G ! i" "G ! (Suc i)" "G ! (Suc (Suc i))" l q] by auto
+qed
+
+lemma exact_seq_imp_group_hom :
+  assumes "exact_seq ((G # l, q)) \<longlongrightarrow>\<^bsub>g\<^esub> H"
+  shows "group_hom G H g"
+proof-
+  { fix t assume "exact_seq t"
+    hence "group_hom (hd (tl (fst t))) (hd (fst t)) (hd(snd t))"
+    proof (induction)
+      case (unity G1 G2 f)
+      then show ?case by auto
+    next
+      case (extension G l g q H h)
+      then show ?case unfolding group_hom_def group_hom_axioms_def by auto
+    qed }
+  note aux_lemma = this
+  show ?thesis using aux_lemma[OF assms]
+    by simp
+qed
+
+lemma exact_seq_imp_group_hom_arbitrary:
+  assumes "exact_seq (G, F)" and "(i :: nat) < length F"
+  shows "group_hom (G ! (Suc i)) (G ! i) (F ! i)"
+proof -
+  have "length (drop i F) \<ge> 1" "length (drop i G) \<ge> 2"
+    using assms(2) exact_seq_length1[OF assms(1)] by auto
+  then obtain l q
+    where "drop i G = (G ! i) # (G ! (Suc i)) # l"
+     and  "drop i F = (F ! i) # q"
+    by (metis Cons_nth_drop_Suc Suc_leI assms exact_seq_length1 fst_conv
+        le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
+  thus ?thesis
+  using dropped_seq_is_exact_seq[OF assms(1), of i] assms(2)
+        exact_seq_imp_group_hom[of "G ! i" "G ! (Suc i)" l q "F ! i"] by simp
+qed
+
+
+subsection \<open>Link Between Exact Sequences and Solvable Conditions\<close>
+
+lemma exact_seq_solvable_imp :
+  assumes "exact_seq ([G1],[]) \<longlongrightarrow>\<^bsub>g1\<^esub> G2 \<longlongrightarrow>\<^bsub>g2\<^esub> G3"
+    and "inj_on g1 (carrier G1)"
+    and "g2 ` (carrier G2) = carrier G3"
+  shows "solvable G2 \<Longrightarrow> (solvable G1) \<and> (solvable G3)"
+proof -
+  assume G2: "solvable G2"
+  have "group_hom G1 G2 g1"
+    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of "Suc 0"] by simp
+  hence "solvable G1"
+    using group_hom.inj_hom_imp_solvable[of G1 G2 g1] assms(2) G2 by simp
+  moreover have "group_hom G2 G3 g2"
+    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of 0] by simp
+  hence "solvable G3"
+    using group_hom.surj_hom_imp_solvable[of G2 G3 g2] assms(3) G2 by simp
+  ultimately show ?thesis by simp
+qed
+
+lemma exact_seq_solvable_recip :
+  assumes "exact_seq ([G1],[]) \<longlongrightarrow>\<^bsub>g1\<^esub> G2 \<longlongrightarrow>\<^bsub>g2\<^esub> G3"
+    and "inj_on g1 (carrier G1)"
+    and "g2 ` (carrier G2) = carrier G3"
+  shows "(solvable G1) \<and> (solvable G3) \<Longrightarrow> solvable G2"
+proof -
+  assume "(solvable G1) \<and> (solvable G3)"
+  hence G1: "solvable G1" and G3: "solvable G3" by auto
+  have g1: "group_hom G1 G2 g1" and g2: "group_hom G2 G3 g2"
+    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of "Suc 0"]
+          exact_seq_imp_group_hom_arbitrary[OF assms(1), of 0] by auto
+  show ?thesis
+    using solvable_condition[OF g1 g2 assms(3)]
+          exact_seq_imp_exact_hom[OF assms(1)] G1 G3 by auto
+qed
+
+proposition exact_seq_solvable_iff :
+  assumes "exact_seq ([G1],[]) \<longlongrightarrow>\<^bsub>g1\<^esub> G2 \<longlongrightarrow>\<^bsub>g2\<^esub> G3"
+    and "inj_on g1 (carrier G1)"
+    and "g2 ` (carrier G2) = carrier G3"
+  shows "(solvable G1) \<and> (solvable G3) \<longleftrightarrow>  solvable G2"
+  using exact_seq_solvable_recip exact_seq_solvable_imp assms by blast
+
+end
+         
\ No newline at end of file