src/HOL/Algebra/Ring_Divisibility.thy
changeset 68578 1f86a092655b
child 68579 6dff90eba493
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Ring_Divisibility.thy	Mon Jul 02 22:40:25 2018 +0100
@@ -0,0 +1,806 @@
+(* ************************************************************************** *)
+(* Title:      Ring_Divisibility.thy                                          *)
+(* Author:     Paulo Emílio de Vilhena                                        *)
+(* ************************************************************************** *)
+
+theory Ring_Divisibility
+imports Ideal Divisibility QuotRing
+
+begin
+
+section \<open>Definitions ported from Multiplicative_Group.thy\<close>
+
+definition mult_of :: "('a, 'b) ring_scheme \<Rightarrow> 'a monoid" where
+  "mult_of R \<equiv> \<lparr> carrier = carrier R - { \<zero>\<^bsub>R\<^esub> }, mult = mult R, one = \<one>\<^bsub>R\<^esub> \<rparr>"
+
+lemma carrier_mult_of [simp]: "carrier (mult_of R) = carrier R - { \<zero>\<^bsub>R\<^esub> }"
+  by (simp add: mult_of_def)
+
+lemma mult_mult_of [simp]: "mult (mult_of R) = mult R"
+ by (simp add: mult_of_def)
+
+lemma nat_pow_mult_of: "([^]\<^bsub>mult_of R\<^esub>) = (([^]\<^bsub>R\<^esub>) :: _ \<Rightarrow> nat \<Rightarrow> _)"
+  by (simp add: mult_of_def fun_eq_iff nat_pow_def)
+
+lemma one_mult_of [simp]: "\<one>\<^bsub>mult_of R\<^esub> = \<one>\<^bsub>R\<^esub>"
+  by (simp add: mult_of_def)
+
+lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of
+
+
+section \<open>The Arithmetic of Rings\<close>
+
+text \<open>In this section we study the links between the divisibility theory and that of rings\<close>
+
+
+subsection \<open>Definitions\<close>
+
+locale factorial_domain = domain + factorial_monoid "mult_of R"
+
+locale noetherian_ring = ring +
+  assumes finetely_gen: "ideal I R \<Longrightarrow> \<exists>A. A \<subseteq> carrier R \<and> finite A \<and> I = Idl A"
+
+locale noetherian_domain = noetherian_ring + domain
+
+locale principal_domain = domain +
+  assumes principal_I: "ideal I R \<Longrightarrow> principalideal I R"
+
+locale euclidean_domain = R?: domain R for R (structure) + fixes \<phi> :: "'a \<Rightarrow> nat"
+  assumes euclidean_function:
+  " \<lbrakk> a \<in> carrier R - { \<zero> }; b \<in> carrier R - { \<zero> } \<rbrakk> \<Longrightarrow>
+   \<exists>q r. q \<in> carrier R \<and> r \<in> carrier R \<and> a = (b \<otimes> q) \<oplus> r \<and> ((r = \<zero>) \<or> (\<phi> r < \<phi> b))"
+
+lemma (in domain) mult_of_is_comm_monoid: "comm_monoid (mult_of R)"
+  apply (rule comm_monoidI)
+  apply (auto simp add: integral_iff m_assoc)
+  apply (simp add: m_comm)
+  done
+
+lemma (in domain) cancel_property: "comm_monoid_cancel (mult_of R)"
+  by (rule comm_monoid_cancelI) (auto simp add: mult_of_is_comm_monoid m_rcancel)
+
+sublocale domain < mult_of: comm_monoid_cancel "(mult_of R)"
+  rewrites "mult (mult_of R) = mult R"
+       and "one  (mult_of R) = one R"
+  using cancel_property by auto
+
+sublocale noetherian_domain \<subseteq> domain ..
+
+sublocale principal_domain \<subseteq> domain ..
+
+sublocale euclidean_domain \<subseteq> domain ..
+
+lemma (in factorial_monoid) is_factorial_monoid: "factorial_monoid G" ..
+
+sublocale factorial_domain < mult_of: factorial_monoid "mult_of R"
+  rewrites "mult (mult_of R) = mult R"
+       and "one  (mult_of R) = one R"
+  using factorial_monoid_axioms by auto
+
+lemma (in domain) factorial_domainI:
+  assumes "\<And>a. a \<in> carrier (mult_of R) \<Longrightarrow>
+               \<exists>fs. set fs \<subseteq> carrier (mult_of R) \<and> wfactors (mult_of R) fs a"
+      and "\<And>a fs fs'. \<lbrakk> a \<in> carrier (mult_of R);
+                        set fs \<subseteq> carrier (mult_of R);
+                        set fs' \<subseteq> carrier (mult_of R);
+                        wfactors (mult_of R) fs a;
+                        wfactors (mult_of R) fs' a \<rbrakk> \<Longrightarrow>
+                        essentially_equal (mult_of R) fs fs'"
+    shows "factorial_domain R"
+  unfolding factorial_domain_def using mult_of.factorial_monoidI assms domain_axioms by auto
+
+lemma (in domain) is_domain: "domain R" ..
+
+lemma (in ring) noetherian_ringI:
+  assumes "\<And>I. ideal I R \<Longrightarrow> \<exists>A. A \<subseteq> carrier R \<and> finite A \<and> I = Idl A"
+  shows "noetherian_ring R"
+  unfolding noetherian_ring_def noetherian_ring_axioms_def using assms is_ring by simp
+
+lemma (in domain) noetherian_domainI:
+  assumes "\<And>I. ideal I R \<Longrightarrow> \<exists>A. A \<subseteq> carrier R \<and> finite A \<and> I = Idl A"
+  shows "noetherian_domain R"
+  unfolding noetherian_domain_def noetherian_ring_def noetherian_ring_axioms_def
+  using assms is_ring is_domain by simp
+
+lemma (in domain) principal_domainI:
+  assumes "\<And>I. ideal I R \<Longrightarrow> principalideal I R"
+  shows "principal_domain R"
+  unfolding principal_domain_def principal_domain_axioms_def using is_domain assms by auto
+
+lemma (in domain) principal_domainI2:
+  assumes "\<And>I. ideal I R \<Longrightarrow> \<exists>a \<in> carrier R. I = PIdl a"
+  shows "principal_domain R"
+  unfolding principal_domain_def principal_domain_axioms_def
+  using is_domain assms principalidealI cgenideal_eq_genideal by auto
+
+lemma (in domain) euclidean_domainI:
+  assumes "\<And>a b. \<lbrakk> a \<in> carrier R - { \<zero> }; b \<in> carrier R - { \<zero> } \<rbrakk> \<Longrightarrow>
+           \<exists>q r. q \<in> carrier R \<and> r \<in> carrier R \<and> a = (b \<otimes> q) \<oplus> r \<and> ((r = \<zero>) \<or> (\<phi> r < \<phi> b))"
+  shows "euclidean_domain R \<phi>"
+  using assms by unfold_locales auto
+
+
+subsection \<open>Basic Properties\<close>
+
+text \<open>Links between domains and commutative cancellative monoids\<close>
+
+lemma (in cring) to_contain_is_to_divide:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "(PIdl b \<subseteq> PIdl a) = (a divides b)"
+proof 
+  show "PIdl b \<subseteq> PIdl a \<Longrightarrow> a divides b"
+  proof -
+    assume "PIdl b \<subseteq> PIdl a"
+    hence "b \<in> PIdl a"
+      by (meson assms(2) local.ring_axioms ring.cgenideal_self subsetCE)
+    thus ?thesis
+      unfolding factor_def cgenideal_def using m_comm assms(1) by blast  
+  qed
+  show "a divides b \<Longrightarrow> PIdl b \<subseteq> PIdl a"
+  proof -
+    assume "a divides b" then obtain c where c: "c \<in> carrier R" "b = c \<otimes> a"
+      unfolding factor_def using m_comm[OF assms(1)] by blast
+    show "PIdl b \<subseteq> PIdl a"
+    proof
+      fix x assume "x \<in> PIdl b"
+      then obtain d where d: "d \<in> carrier R" "x = d \<otimes> b"
+        unfolding cgenideal_def by blast
+      hence "x = (d \<otimes> c) \<otimes> a"
+        using c d m_assoc assms by simp
+      thus "x \<in> PIdl a"
+        unfolding cgenideal_def using m_assoc assms c d by blast
+    qed
+  qed
+qed
+
+lemma (in cring) associated_iff_same_ideal:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "(a \<sim> b) = (PIdl a = PIdl b)"
+  unfolding associated_def
+  using to_contain_is_to_divide[OF assms]
+        to_contain_is_to_divide[OF assms(2) assms(1)] by auto
+
+lemma divides_mult_imp_divides [simp]: "a divides\<^bsub>(mult_of R)\<^esub> b \<Longrightarrow> a divides\<^bsub>R\<^esub> b"
+  unfolding factor_def by auto
+
+lemma (in domain) divides_imp_divides_mult [simp]:
+  "\<lbrakk> a \<in> carrier R; b \<in> carrier R - { \<zero> } \<rbrakk> \<Longrightarrow>
+     a divides\<^bsub>R\<^esub> b \<Longrightarrow> a divides\<^bsub>(mult_of R)\<^esub> b"
+  unfolding factor_def using integral_iff by auto 
+
+lemma assoc_mult_imp_assoc [simp]: "a \<sim>\<^bsub>(mult_of R)\<^esub> b \<Longrightarrow> a \<sim>\<^bsub>R\<^esub> b"
+  unfolding associated_def by simp
+
+lemma (in domain) assoc_imp_assoc_mult [simp]:
+  "\<lbrakk> a \<in> carrier R - { \<zero> } ; b \<in> carrier R - { \<zero> } \<rbrakk> \<Longrightarrow>
+     a \<sim>\<^bsub>R\<^esub> b \<Longrightarrow> a \<sim>\<^bsub>(mult_of R)\<^esub> b"
+  unfolding associated_def by simp
+
+lemma (in domain) Units_mult_eq_Units [simp]: "Units (mult_of R) = Units R"
+  unfolding Units_def using insert_Diff integral_iff by auto
+
+lemma (in domain) properfactor_mult_imp_properfactor:
+  "\<lbrakk> a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> properfactor (mult_of R) b a \<Longrightarrow> properfactor R b a"
+proof -
+  assume A: "a \<in> carrier R" "b \<in> carrier R" "properfactor (mult_of R) b a"
+  then obtain c where c: "c \<in> carrier (mult_of R)" "a = b \<otimes> c"
+    unfolding properfactor_def factor_def by auto
+  have "a \<noteq> \<zero>"
+  proof (rule ccontr)
+    assume a: "\<not> a \<noteq> \<zero>"
+    hence "b = \<zero>" using c A integral[of b c] by auto
+    hence "b = a \<otimes> \<one>" using a A by simp
+    hence "a divides\<^bsub>(mult_of R)\<^esub> b"
+      unfolding factor_def by auto
+    thus False using A unfolding properfactor_def by simp
+  qed
+  hence "b \<noteq> \<zero>"
+    using c A integral_iff by auto
+  thus "properfactor R b a"
+    using A divides_imp_divides_mult[of a b] unfolding properfactor_def
+    by (meson DiffI divides_mult_imp_divides empty_iff insert_iff) 
+qed
+
+lemma (in domain) properfactor_imp_properfactor_mult:
+  "\<lbrakk> a \<in> carrier R - { \<zero> }; b \<in> carrier R \<rbrakk> \<Longrightarrow> properfactor R b a \<Longrightarrow> properfactor (mult_of R) b a"
+  unfolding properfactor_def factor_def by auto
+
+lemma (in domain) primeideal_iff_prime:
+  assumes "p \<in> carrier (mult_of R)"
+  shows "(primeideal (PIdl p) R) = (prime (mult_of R) p)"
+proof
+  show "prime (mult_of R) p \<Longrightarrow> primeideal (PIdl p) R"
+  proof (rule primeidealI)
+    assume A: "prime (mult_of R) p"
+    show "ideal (PIdl p) R" and "cring R"
+      using assms is_cring by (auto simp add: cgenideal_ideal)
+    show "carrier R \<noteq> PIdl p"
+    proof (rule ccontr)
+      assume "\<not> carrier R \<noteq> PIdl p" hence "carrier R = PIdl p" by simp
+      then obtain c where "c \<in> carrier R" "c \<otimes> p = \<one>"
+        unfolding cgenideal_def using one_closed by (smt mem_Collect_eq)
+      hence "p \<in> Units R" unfolding Units_def using m_comm assms by auto
+      thus False using A unfolding prime_def by simp
+    qed
+    fix a b assume a: "a \<in> carrier R" and b: "b \<in> carrier R" and ab: "a \<otimes> b \<in> PIdl p"
+    thus "a \<in> PIdl p \<or> b \<in> PIdl p"
+    proof (cases "a = \<zero> \<or> b = \<zero>")
+      case True thus "a \<in> PIdl p \<or> b \<in> PIdl p" using ab a b by auto
+    next
+      { fix a assume "a \<in> carrier R" "p divides\<^bsub>mult_of R\<^esub> a"
+        then obtain c where "c \<in> carrier R" "a = p \<otimes> c"
+          unfolding factor_def by auto
+        hence "a \<in> PIdl p" unfolding cgenideal_def using assms m_comm by auto }
+      note aux_lemma = this
+
+      case False hence "a \<noteq> \<zero> \<and> b \<noteq> \<zero>" by simp
+      hence diff_zero: "a \<otimes> b \<noteq> \<zero>" using a b integral by blast
+      then obtain c where c: "c \<in> carrier R" "a \<otimes> b = p \<otimes> c"
+        using assms ab m_comm unfolding cgenideal_def by auto
+      hence "c \<noteq> \<zero>" using c assms diff_zero by auto
+      hence "p divides\<^bsub>(mult_of R)\<^esub> (a \<otimes> b)"
+        unfolding factor_def using ab c by auto
+      hence "p divides\<^bsub>(mult_of R)\<^esub> a \<or> p divides\<^bsub>(mult_of R)\<^esub> b"
+        using A a b False unfolding prime_def by auto
+      thus "a \<in> PIdl p \<or> b \<in> PIdl p" using a b aux_lemma by blast
+    qed
+  qed
+next
+  show "primeideal (PIdl p) R \<Longrightarrow> prime (mult_of R) p"
+  proof -
+    assume A: "primeideal (PIdl p) R" show "prime (mult_of R) p"
+    proof (rule primeI)
+      show "p \<notin> Units (mult_of R)"
+      proof (rule ccontr)
+        assume "\<not> p \<notin> Units (mult_of R)"
+        hence p: "p \<in> Units (mult_of R)" by simp
+        then obtain q where q: "q \<in> carrier R - { \<zero> }" "p \<otimes> q = \<one>" "q \<otimes> p = \<one>"
+          unfolding Units_def apply simp by blast
+        have "PIdl p = carrier R"
+        proof
+          show "PIdl p \<subseteq> carrier R"
+            by (simp add: assms A additive_subgroup.a_subset ideal.axioms(1) primeideal.axioms(1))
+        next
+          show "carrier R \<subseteq> PIdl p"
+          proof
+            fix r assume r: "r \<in> carrier R" hence "r = (r \<otimes> q) \<otimes> p"
+              using p q m_assoc unfolding Units_def by simp
+            thus "r \<in> PIdl p" unfolding cgenideal_def using q r m_closed by blast
+          qed
+        qed
+        moreover have "PIdl p \<noteq> carrier R" using A primeideal.I_notcarr by auto
+        ultimately show False by simp 
+      qed
+    next
+      { fix a assume "a \<in> PIdl p" and a: "a \<noteq> \<zero>"
+        then obtain c where c: "c \<in> carrier R" "a = p \<otimes> c"
+          unfolding cgenideal_def using m_comm assms by auto
+        hence "c \<noteq> \<zero>" using assms a by auto
+        hence "p divides\<^bsub>mult_of R\<^esub> a" unfolding factor_def using c by auto }
+      note aux_lemma = this
+
+      fix a b
+      assume a: "a \<in> carrier (mult_of R)" and b: "b \<in> carrier (mult_of R)"
+         and p: "p divides\<^bsub>mult_of R\<^esub> a \<otimes>\<^bsub>mult_of R\<^esub> b"
+      then obtain c where "c \<in> carrier R" "a \<otimes> b = c \<otimes> p"
+        unfolding factor_def using m_comm assms by auto
+      hence "a \<otimes> b \<in> PIdl p" unfolding cgenideal_def by blast
+      hence "a \<in> PIdl p \<or> b \<in> PIdl p" using A primeideal.I_prime[OF A] a b by auto
+      thus "p divides\<^bsub>mult_of R\<^esub> a \<or> p divides\<^bsub>mult_of R\<^esub> b"
+        using a b aux_lemma by auto
+    qed
+  qed
+qed
+
+
+subsection \<open>Noetherian Rings\<close>
+
+lemma (in noetherian_ring) trivial_ideal_seq:
+  assumes "\<And>i :: nat. ideal (I i) R"
+    and "\<And>i j. i \<le> j \<Longrightarrow> I i \<subseteq> I j"
+  shows "\<exists>n. \<forall>k. k \<ge> n \<longrightarrow> I k = I n"
+proof -
+  have "ideal (\<Union>i. I i) R"
+  proof
+    show "(\<Union>i. I i) \<subseteq> carrier (add_monoid R)"
+      using additive_subgroup.a_subset assms(1) ideal.axioms(1) by fastforce
+    have "\<one>\<^bsub>add_monoid R\<^esub> \<in> I 0"
+      by (simp add: additive_subgroup.zero_closed assms(1) ideal.axioms(1))
+    thus "\<one>\<^bsub>add_monoid R\<^esub> \<in> (\<Union>i. I i)" by blast
+  next
+    fix x y assume x: "x \<in> (\<Union>i. I i)" and y: "y \<in> (\<Union>i. I i)"
+    then obtain i j where i: "x \<in> I i" and j: "y \<in> I j" by blast
+    hence "inv\<^bsub>add_monoid R\<^esub> x \<in> I i"
+      by (simp add: additive_subgroup.a_subgroup assms(1) ideal.axioms(1) subgroup.m_inv_closed)
+    thus "inv\<^bsub>add_monoid R\<^esub> x \<in> (\<Union>i. I i)" by blast
+    have "x \<otimes>\<^bsub>add_monoid R\<^esub> y \<in> I (max i j)"
+      by (metis add.subgroupE(4) additive_subgroup.a_subgroup assms(1-2) i j ideal.axioms(1)
+          max.cobounded1 max.cobounded2 monoid.select_convs(1) rev_subsetD)
+    thus "x \<otimes>\<^bsub>add_monoid R\<^esub> y \<in> (\<Union>i. I i)" by blast
+  next
+    fix x a assume x: "x \<in> carrier R" and a: "a \<in> (\<Union>i. I i)"
+    then obtain i where i: "a \<in> I i" by blast
+    hence "x \<otimes> a \<in> I i" and "a \<otimes> x \<in> I i"
+      by (simp_all add: assms(1) ideal.I_l_closed ideal.I_r_closed x)
+    thus "x \<otimes> a \<in> (\<Union>i. I i)"
+     and "a \<otimes> x \<in> (\<Union>i. I i)" by blast+
+  qed
+
+  then obtain S where S: "S \<subseteq> carrier R" "finite S" "(\<Union>i. I i) = Idl S"
+    by (meson finetely_gen)
+  hence "S \<subseteq> (\<Union>i. I i)"
+    by (simp add: genideal_self)
+
+  from \<open>finite S\<close> and \<open>S \<subseteq> (\<Union>i. I i)\<close> have "\<exists>n. S \<subseteq> I n"
+  proof (induct S set: "finite")
+    case empty thus ?case by simp 
+  next
+    case (insert x S')
+    then obtain n m where m: "S' \<subseteq> I m" and n: "x \<in> I n" by blast
+    hence "insert x S' \<subseteq> I (max m n)"
+      by (meson assms(2) insert_subsetI max.cobounded1 max.cobounded2 rev_subsetD subset_trans) 
+    thus ?case by blast
+  qed
+  then obtain n where "S \<subseteq> I n" by blast
+  hence "I n = (\<Union>i. I i)"
+    by (metis S(3) Sup_upper assms(1) genideal_minimal range_eqI subset_antisym)
+  thus ?thesis
+    by (metis (full_types) Sup_upper assms(2) range_eqI subset_antisym)
+qed
+
+lemma increasing_set_seq_iff:
+  "(\<And>i. I i \<subseteq> I (Suc i)) == (\<And>i j. i \<le> j \<Longrightarrow> I i \<subseteq> I j)"
+proof
+  fix i j :: "nat"
+  assume A: "\<And>i. I i \<subseteq> I (Suc i)" and "i \<le> j"
+  then obtain k where k: "j = i + k"
+    using le_Suc_ex by blast
+  have "I i \<subseteq> I (i + k)"
+    by (induction k) (simp_all add: A lift_Suc_mono_le)
+  thus "I i \<subseteq> I j" using k by simp
+next
+  fix i assume "\<And>i j. i \<le> j \<Longrightarrow> I i \<subseteq> I j"
+  thus "I i \<subseteq> I (Suc i)" by simp
+qed
+
+
+text \<open>Helper definition for the lemma: trivial_ideal_seq_imp_noetherian\<close>
+fun S_builder :: "_ \<Rightarrow> 'a set \<Rightarrow> nat \<Rightarrow> 'a set" where
+  "S_builder R J 0 = {}" |
+  "S_builder R J (Suc n) =
+     (let diff = (J - Idl\<^bsub>R\<^esub> (S_builder R J n)) in
+        (if diff \<noteq> {} then insert (SOME x. x \<in> diff) (S_builder R J n) else (S_builder R J n)))"
+
+lemma S_builder_incl: "S_builder R J n \<subseteq> J"
+  by (induction n) (simp_all, (metis (no_types, lifting) some_eq_ex subsetI))
+
+lemma (in ring) S_builder_const1:
+  assumes "ideal J R" "S_builder R J (Suc n) = S_builder R J n"
+  shows "J = Idl (S_builder R J n)"
+proof -
+  have "J - Idl (S_builder R J n) = {}"
+  proof (rule ccontr)
+    assume "J - Idl (S_builder R J n) \<noteq> {}"
+    hence "S_builder R J (Suc n) = insert (SOME x. x \<in> (J - Idl (S_builder R J n))) (S_builder R J n)"
+      by simp
+    moreover have "(S_builder R J n) \<subseteq> Idl (S_builder R J n)"
+      using S_builder_incl assms(1)
+      by (metis additive_subgroup.a_subset dual_order.trans genideal_self ideal.axioms(1))
+    ultimately have "S_builder R J (Suc n) \<noteq> S_builder R J n"
+      by (metis Diff_iff \<open>J - Idl S_builder R J n \<noteq> {}\<close> insert_subset some_in_eq)
+    thus False using assms(2) by simp
+  qed
+  thus "J = Idl (S_builder R J n)"
+    by (meson S_builder_incl[of R J n] Diff_eq_empty_iff assms(1) genideal_minimal subset_antisym)
+qed
+
+lemma (in ring) S_builder_const2:
+  assumes "ideal J R" "Idl (S_builder R J (Suc n)) = Idl (S_builder R J n)"
+  shows "S_builder R J (Suc n) = S_builder R J n"
+proof (rule ccontr)
+  assume "S_builder R J (Suc n) \<noteq> S_builder R J n"
+  hence A: "J - Idl (S_builder R J n) \<noteq> {}" by auto
+  hence "S_builder R J (Suc n) = insert (SOME x. x \<in> (J - Idl (S_builder R J n))) (S_builder R J n)" by simp
+  then obtain x where x: "x \<in> (J - Idl (S_builder R J n))"
+                  and S: "S_builder R J (Suc n) = insert x (S_builder R J n)"
+    using A some_in_eq by blast
+  have "x \<notin> Idl (S_builder R J n)" using x by blast
+  moreover have "x \<in> Idl (S_builder R J (Suc n))"
+    by (metis (full_types) S S_builder_incl additive_subgroup.a_subset
+        assms(1) dual_order.trans genideal_self ideal.axioms(1) insert_subset)
+  ultimately show False using assms(2) by blast
+qed
+
+lemma (in ring) trivial_ideal_seq_imp_noetherian:
+  assumes "\<And>I. \<lbrakk> \<And>i :: nat. ideal (I i) R; \<And>i j. i \<le> j \<Longrightarrow> (I i) \<subseteq> (I j) \<rbrakk> \<Longrightarrow>
+                 (\<exists>n. \<forall>k. k \<ge> n \<longrightarrow> I k = I n)"
+  shows "noetherian_ring R"
+proof -
+  have "\<And>J. ideal J R \<Longrightarrow> \<exists>A. A \<subseteq> carrier R \<and> finite A \<and> J = Idl A"
+  proof -
+    fix J assume J: "ideal J R"
+    define S and I where "S = (\<lambda>i. S_builder R J i)" and "I = (\<lambda>i. Idl (S i))"
+    hence "\<And>i. ideal (I i) R"
+      by (meson J S_builder_incl additive_subgroup.a_subset genideal_ideal ideal.axioms(1) subset_trans)
+    moreover have "\<And>n. S n \<subseteq> S (Suc n)" using S_def by auto
+    hence "\<And>n. I n \<subseteq> I (Suc n)"
+      using S_builder_incl[of R J] J S_def I_def
+      by (meson additive_subgroup.a_subset dual_order.trans ideal.axioms(1) subset_Idl_subset)
+    ultimately obtain n where "\<And>k. k \<ge> n \<Longrightarrow> I k = I n"
+      using assms increasing_set_seq_iff[of I] by (metis lift_Suc_mono_le) 
+    hence "J = Idl (S_builder R J n)"
+      using S_builder_const1[OF J, of n] S_builder_const2[OF J, of n] I_def S_def
+      by (meson Suc_n_not_le_n le_cases)
+    moreover have "finite (S_builder R J n)" by (induction n) (simp_all)
+    ultimately show "\<exists>A. A \<subseteq> carrier R \<and> finite A \<and> J = Idl A"
+      by (meson J S_builder_incl ideal.Icarr set_rev_mp subsetI)
+  qed
+  thus ?thesis
+    by (simp add: local.ring_axioms noetherian_ring_axioms_def noetherian_ring_def) 
+qed
+
+lemma (in noetherian_domain) wfactors_exists:
+  assumes "x \<in> carrier (mult_of R)"
+  shows "\<exists>fs. set fs \<subseteq> carrier (mult_of R) \<and> wfactors (mult_of R) fs x" (is "?P x")
+proof (rule ccontr)
+  { fix x
+    assume A: "x \<in> carrier (mult_of R)" "\<not> ?P x"
+    have "\<exists>a. a \<in> carrier (mult_of R) \<and> properfactor (mult_of R) a x \<and> \<not> ?P a"
+    proof -
+      have "\<not> irreducible (mult_of R) x"
+      proof (rule ccontr)
+        assume "\<not> (\<not> irreducible (mult_of R) x)" hence "irreducible (mult_of R) x" by simp
+        hence "wfactors (mult_of R) [ x ] x" unfolding wfactors_def using A by auto 
+        thus False using A by auto
+      qed
+      moreover have  "\<not> x \<in> Units (mult_of R)"
+        using A monoid.unit_wfactors[OF mult_of.monoid_axioms, of x] by auto
+      ultimately
+      obtain a where a: "a \<in> carrier (mult_of R)" "properfactor (mult_of R) a x" "a \<notin> Units (mult_of R)"
+        unfolding irreducible_def by blast
+      then obtain b where b: "b \<in> carrier (mult_of R)" "x = a \<otimes> b"
+        unfolding properfactor_def by auto
+      hence b_properfactor: "properfactor (mult_of R) b x"
+        using A a mult_of.m_comm mult_of.properfactorI3 by blast
+      have "\<not> ?P a \<or> \<not> ?P b"
+      proof (rule ccontr)
+        assume "\<not> (\<not> ?P a \<or> \<not> ?P b)"
+        then obtain fs_a fs_b
+          where fs_a: "wfactors (mult_of R) fs_a a" "set fs_a \<subseteq> carrier (mult_of R)"
+            and fs_b: "wfactors (mult_of R) fs_b b" "set fs_b \<subseteq> carrier (mult_of R)" by blast
+        hence "wfactors (mult_of R) (fs_a @ fs_b) x"
+          using fs_a fs_b a b mult_of.wfactors_mult by simp
+        moreover have "set (fs_a @ fs_b) \<subseteq> carrier (mult_of R)"
+          using fs_a fs_b by auto
+        ultimately show False using A by blast 
+      qed
+      thus ?thesis using a b b_properfactor mult_of.m_comm by blast
+    qed } note aux_lemma = this
+  
+  assume A: "\<not> ?P x"
+
+  define f :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+    where "f = (\<lambda>a x. (a \<in> carrier (mult_of R) \<and> properfactor (mult_of R) a x \<and> \<not> ?P a))"
+  define factor_seq :: "nat \<Rightarrow> 'a"
+    where "factor_seq = rec_nat x (\<lambda>n y. (SOME a. f a y))"
+  define I where "I = (\<lambda>i. PIdl (factor_seq i))"
+  have factor_seq_props:
+    "\<And>n. properfactor (mult_of R) (factor_seq (Suc n)) (factor_seq n) \<and> 
+         (factor_seq n) \<in> carrier (mult_of R) \<and> \<not> ?P (factor_seq n)" (is "\<And>n. ?Q n")
+  proof -
+    fix n show "?Q n"
+    proof (induct n)
+      case 0
+      have x: "factor_seq 0 = x"
+        using factor_seq_def by simp
+      hence "factor_seq (Suc 0) = (SOME a. f a x)"
+        by (simp add: factor_seq_def)
+      moreover have "\<exists>a. f a x"
+        using aux_lemma[OF assms] A f_def by blast
+      ultimately have "f (factor_seq (Suc 0)) x"
+        using tfl_some by metis
+      thus ?case using f_def A assms x by simp
+    next
+      case (Suc n)
+      have "factor_seq (Suc n) = (SOME a. f a (factor_seq n))"
+        by (simp add: factor_seq_def)
+      moreover have "\<exists>a. f a (factor_seq n)"
+        using aux_lemma f_def Suc.hyps by blast
+      ultimately have Step0: "f (factor_seq (Suc n)) (factor_seq n)"
+        using tfl_some by metis
+      hence "\<exists>a. f a (factor_seq (Suc n))"
+        using aux_lemma f_def by blast
+      moreover have "factor_seq (Suc (Suc n)) = (SOME a. f a (factor_seq (Suc n)))"
+        by (simp add: factor_seq_def)
+      ultimately have Step1: "f (factor_seq (Suc (Suc n))) (factor_seq (Suc n))"
+        using tfl_some by metis
+      show ?case using Step0 Step1 f_def by simp
+    qed
+  qed
+
+  have in_carrier: "\<And>i. factor_seq i \<in> carrier R"
+    using factor_seq_props by simp 
+  hence "\<And>i. ideal (I i) R"
+    using I_def by (simp add: cgenideal_ideal)
+
+  moreover
+  have "\<And>i. factor_seq (Suc i) divides factor_seq i"
+    using factor_seq_props unfolding properfactor_def by auto
+  hence "\<And>i. PIdl (factor_seq i) \<subseteq> PIdl (factor_seq (Suc i))"
+    using in_carrier to_contain_is_to_divide by simp
+  hence "\<And>i j. i \<le> j \<Longrightarrow> I i \<subseteq> I j"
+    using increasing_set_seq_iff[of I] unfolding I_def by auto
+
+  ultimately obtain n where "\<And>k. n \<le> k \<Longrightarrow> I n = I k"
+    by (metis trivial_ideal_seq)
+  hence "I (Suc n) \<subseteq> I n" by (simp add: equalityD2)
+  hence "factor_seq n divides factor_seq (Suc n)"
+    using in_carrier I_def to_contain_is_to_divide by simp
+  moreover have "\<not> factor_seq n divides\<^bsub>(mult_of R)\<^esub> factor_seq (Suc n)"
+    using factor_seq_props[of n] unfolding properfactor_def by simp
+  hence "\<not> factor_seq n divides factor_seq (Suc n)"
+    using divides_imp_divides_mult[of "factor_seq n" "factor_seq (Suc n)"]
+          in_carrier[of n] factor_seq_props[of "Suc n"] by auto
+  ultimately show False by simp
+qed
+
+
+subsection \<open>Principal Domains\<close>
+
+sublocale principal_domain \<subseteq> noetherian_domain
+proof
+  fix I assume "ideal I R"
+  then obtain i where "i \<in> carrier R" "I = Idl { i }"
+    using principal_I principalideal.generate by blast
+  thus "\<exists>A \<subseteq> carrier R. finite A \<and> I = Idl A" by blast
+qed
+
+lemma (in principal_domain) irreducible_imp_maximalideal:
+  assumes "p \<in> carrier (mult_of R)"
+    and "irreducible (mult_of R) p"
+  shows "maximalideal (PIdl p) R"
+proof (rule maximalidealI)
+  show "ideal (PIdl p) R"
+    using assms(1) by (simp add: cgenideal_ideal)
+next
+  show "carrier R \<noteq> PIdl p"
+  proof (rule ccontr)
+    assume "\<not> carrier R \<noteq> PIdl p"
+    hence "carrier R = PIdl p" by simp
+    then obtain c where "c \<in> carrier R" "\<one> = c \<otimes> p"
+      unfolding cgenideal_def using one_closed by auto
+    hence "p \<in> Units R"
+      unfolding Units_def using assms(1) m_comm by auto
+    thus False
+      using assms unfolding irreducible_def by auto
+  qed
+next
+  fix J assume J: "ideal J R" "PIdl p \<subseteq> J" "J \<subseteq> carrier R"
+  then obtain q where q: "q \<in> carrier R" "J = PIdl q"
+    using principal_I[OF J(1)] cgenideal_eq_rcos is_cring
+          principalideal.rcos_generate by (metis contra_subsetD)
+  hence "q divides p"
+    using to_contain_is_to_divide[of q p] using assms(1) J(1-2) by simp
+  hence q_div_p: "q divides\<^bsub>(mult_of R)\<^esub> p"
+    using assms(1) divides_imp_divides_mult[OF q(1), of p] by (simp add: \<open>q divides p\<close>) 
+  show "J = PIdl p \<or> J = carrier R"
+  proof (cases "q \<in> Units R")
+    case True thus ?thesis
+      by (metis J(1) Units_r_inv_ex cgenideal_self ideal.I_r_closed ideal.one_imp_carrier q(1) q(2))
+  next
+    case False
+    have q_in_carr: "q \<in> carrier (mult_of R)"
+      using q_div_p unfolding factor_def using assms(1) q(1) by auto
+    hence "p divides\<^bsub>(mult_of R)\<^esub> q"
+      using q_div_p False assms(2) unfolding irreducible_def properfactor_def by auto
+    hence "p \<sim> q" using q_div_p
+      unfolding associated_def by simp
+    thus ?thesis using associated_iff_same_ideal[of p q] assms(1) q_in_carr q by simp
+  qed
+qed
+
+corollary (in principal_domain) primeness_condition:
+  assumes "p \<in> carrier (mult_of R)"
+  shows "(irreducible (mult_of R) p) \<longleftrightarrow> (prime (mult_of R) p)"
+proof
+  show "irreducible (mult_of R) p \<Longrightarrow> prime (mult_of R) p"
+    using irreducible_imp_maximalideal maximalideal_prime primeideal_iff_prime assms by auto
+next
+  show "prime (mult_of R) p \<Longrightarrow> irreducible (mult_of R) p"
+    using mult_of.prime_irreducible by simp
+qed
+
+lemma (in principal_domain) domain_iff_prime:
+  assumes "a \<in> carrier R - { \<zero> }"
+  shows "domain (R Quot (PIdl a)) \<longleftrightarrow> prime (mult_of R) a"
+  using quot_domain_iff_primeideal[of "PIdl a"] primeideal_iff_prime[of a]
+        cgenideal_ideal[of a] assms by auto
+
+lemma (in principal_domain) field_iff_prime:
+  assumes "a \<in> carrier R - { \<zero> }"
+  shows "field (R Quot (PIdl a)) \<longleftrightarrow> prime (mult_of R) a"
+proof
+  show "prime (mult_of R) a \<Longrightarrow> field  (R Quot (PIdl a))"
+    using  primeness_condition[of a] irreducible_imp_maximalideal[of a]
+           maximalideal.quotient_is_field[of "PIdl a" R] is_cring assms by auto
+next
+  show "field  (R Quot (PIdl a)) \<Longrightarrow> prime (mult_of R) a"
+    unfolding field_def using domain_iff_prime[of a] assms by auto
+qed
+
+sublocale principal_domain < mult_of: primeness_condition_monoid "(mult_of R)"
+  rewrites "mult (mult_of R) = mult R"
+       and "one  (mult_of R) = one R"
+  unfolding primeness_condition_monoid_def
+            primeness_condition_monoid_axioms_def
+  using mult_of.is_comm_monoid_cancel primeness_condition by auto
+
+sublocale principal_domain < mult_of: factorial_monoid "(mult_of R)"
+  rewrites "mult (mult_of R) = mult R"
+       and "one  (mult_of R) = one R"
+  apply (rule mult_of.factorial_monoidI)
+  using mult_of.wfactors_unique wfactors_exists mult_of.is_comm_monoid_cancel by auto
+
+sublocale principal_domain \<subseteq> factorial_domain
+  unfolding factorial_domain_def using is_domain mult_of.is_factorial_monoid by simp
+
+lemma (in principal_domain) ideal_sum_iff_gcd:
+  assumes "a \<in> carrier (mult_of R)" "b \<in> carrier (mult_of R)" "d \<in> carrier (mult_of R)"
+  shows "((PIdl a) <+>\<^bsub>R\<^esub> (PIdl b) = (PIdl d)) \<longleftrightarrow> (d gcdof\<^bsub>(mult_of R)\<^esub> a b)"
+proof
+  assume A: "(PIdl a) <+>\<^bsub>R\<^esub> (PIdl b) = (PIdl d)" show "d gcdof\<^bsub>(mult_of R)\<^esub> a b"
+  proof -
+    have "(PIdl a) \<subseteq> (PIdl d) \<and> (PIdl b) \<subseteq> (PIdl d)"
+    using assms
+      by (simp, metis Un_subset_iff cgenideal_ideal cgenideal_minimal local.ring_axioms
+          ring.genideal_self ring.oneideal ring.union_genideal A)
+    hence "d divides a \<and> d divides b"
+      using assms apply simp
+      using to_contain_is_to_divide[of d a] to_contain_is_to_divide[of d b] by auto
+    hence "d divides\<^bsub>(mult_of R)\<^esub> a \<and> d divides\<^bsub>(mult_of R)\<^esub> b"
+      using assms by simp
+
+    moreover
+    have "\<And>c. \<lbrakk> c \<in> carrier (mult_of R); c divides\<^bsub>(mult_of R)\<^esub> a; c divides\<^bsub>(mult_of R)\<^esub> b \<rbrakk> \<Longrightarrow>
+                c divides\<^bsub>(mult_of R)\<^esub> d"
+    proof -
+      fix c assume c: "c \<in> carrier (mult_of R)"
+               and "c divides\<^bsub>(mult_of R)\<^esub> a" "c divides\<^bsub>(mult_of R)\<^esub> b"
+      hence "c divides a" "c divides b" by auto
+      hence "(PIdl a) \<subseteq> (PIdl c) \<and> (PIdl b) \<subseteq> (PIdl c)"
+        using to_contain_is_to_divide[of c a] to_contain_is_to_divide[of c b] c assms by simp
+      hence "((PIdl a) <+>\<^bsub>R\<^esub> (PIdl b)) \<subseteq> (PIdl c)"
+        using assms c
+        by (simp, metis Un_subset_iff cgenideal_ideal cgenideal_minimal
+                        Idl_subset_ideal oneideal union_genideal)
+      hence incl: "(PIdl d) \<subseteq> (PIdl c)" using A by simp
+      hence "c divides d"
+        using c assms(3) apply simp
+        using to_contain_is_to_divide[of c d] by blast
+      thus "c divides\<^bsub>(mult_of R)\<^esub> d" using c assms(3) by simp
+    qed
+
+    ultimately show ?thesis unfolding isgcd_def by simp
+  qed
+next
+  assume A:"d gcdof\<^bsub>mult_of R\<^esub> a b" show "PIdl a <+>\<^bsub>R\<^esub> PIdl b = PIdl d"
+  proof
+    have "d divides a" "d divides b"
+      using A unfolding isgcd_def by auto
+    hence "(PIdl a) \<subseteq> (PIdl d) \<and> (PIdl b) \<subseteq> (PIdl d)"
+      using to_contain_is_to_divide[of d a] to_contain_is_to_divide[of d b] assms by simp
+    thus "PIdl a <+>\<^bsub>R\<^esub> PIdl b \<subseteq> PIdl d" using assms
+      by (simp, metis Un_subset_iff cgenideal_ideal cgenideal_minimal
+                      Idl_subset_ideal oneideal union_genideal)
+  next
+    have "ideal ((PIdl a) <+>\<^bsub>R\<^esub> (PIdl b)) R"
+      using assms by (simp add: cgenideal_ideal local.ring_axioms ring.add_ideals)
+    then obtain c where c: "c \<in> carrier R" "(PIdl c) = (PIdl a) <+>\<^bsub>R\<^esub> (PIdl b)"
+      using cgenideal_eq_genideal principal_I principalideal.generate by force
+    hence "(PIdl a) \<subseteq> (PIdl c) \<and> (PIdl b) \<subseteq> (PIdl c)" using assms
+      by (simp, metis Un_subset_iff cgenideal_ideal cgenideal_minimal
+                      genideal_self oneideal union_genideal)
+    hence "c divides a \<and> c divides b" using c(1) assms apply simp
+      using to_contain_is_to_divide[of c a] to_contain_is_to_divide[of c b] by blast
+    hence "c divides\<^bsub>(mult_of R)\<^esub> a \<and> c divides\<^bsub>(mult_of R)\<^esub> b"
+      using assms(1-2) c(1) by simp
+
+    moreover have neq_zero: "c \<noteq> \<zero>"
+    proof (rule ccontr)
+      assume "\<not> c \<noteq> \<zero>" hence "PIdl c = { \<zero> }"
+        using cgenideal_eq_genideal genideal_zero by auto
+      moreover have "\<one> \<otimes> a \<in> PIdl a \<and> \<zero> \<otimes> b \<in> PIdl b"
+        unfolding cgenideal_def using assms one_closed zero_closed by blast
+      hence "(\<one> \<otimes> a) \<oplus> (\<zero> \<otimes> b) \<in> (PIdl a) <+>\<^bsub>R\<^esub> (PIdl b)"
+        unfolding set_add_def' by auto
+      hence "a \<in> PIdl c"
+        using c assms by simp
+      ultimately show False
+        using assms(1) by simp
+    qed
+
+    ultimately have "c divides\<^bsub>(mult_of R)\<^esub> d"
+      using A c(1) unfolding isgcd_def by simp
+    hence "(PIdl d) \<subseteq> (PIdl c)"
+      using to_contain_is_to_divide[of c d] c(1) assms(3) by simp
+    thus "PIdl d \<subseteq> PIdl a <+>\<^bsub>R\<^esub> PIdl b" using c by simp
+  qed
+qed
+
+lemma (in principal_domain) bezout_identity:
+  assumes "a \<in> carrier (mult_of R)" "b \<in> carrier (mult_of R)"
+  shows "(PIdl a) <+>\<^bsub>R\<^esub> (PIdl b) = (PIdl (somegcd (mult_of R) a b))"
+proof -
+  have "(somegcd (mult_of R) a b) \<in> carrier (mult_of R)"
+    using mult_of.gcd_exists[OF assms] by simp
+  hence "\<And>x. x = somegcd (mult_of R) a b \<Longrightarrow> (PIdl a) <+>\<^bsub>R\<^esub> (PIdl b) = (PIdl x)"
+    using mult_of.gcd_isgcd[OF assms] ideal_sum_iff_gcd[OF assms] by simp
+  thus ?thesis
+    using mult_of.gcd_exists[OF assms] by blast
+qed
+
+
+subsection \<open>Euclidean Domains\<close>
+
+sublocale euclidean_domain \<subseteq> principal_domain
+  unfolding principal_domain_def principal_domain_axioms_def
+proof (auto)
+  show "domain R" by (simp add: domain_axioms)
+next
+  fix I assume I: "ideal I R" show "principalideal I R"
+  proof (cases "I = { \<zero> }")
+    case True thus ?thesis by (simp add: zeropideal) 
+  next
+    case False hence A: "I - { \<zero> } \<noteq> {}"
+      using I additive_subgroup.zero_closed ideal.axioms(1) by auto 
+    define phi_img :: "nat set" where "phi_img = (\<phi> ` (I - { \<zero> }))"
+    hence "phi_img \<noteq> {}" using A by simp 
+    then obtain m where "m \<in> phi_img" "\<And>k. k \<in> phi_img \<Longrightarrow> m \<le> k"
+      using exists_least_iff[of "\<lambda>n. n \<in> phi_img"] not_less by force
+    then obtain a where a: "a \<in> I - { \<zero> }" "\<And>b. b \<in> I - { \<zero> } \<Longrightarrow> \<phi> a \<le> \<phi> b"
+      using phi_img_def by blast
+    have "I = PIdl a"
+    proof (rule ccontr)
+      assume "I \<noteq> PIdl a"
+      then obtain b where b: "b \<in> I" "b \<notin> PIdl a"
+        using I \<open>a \<in> I - {\<zero>}\<close> cgenideal_minimal by auto
+      hence "b \<noteq> \<zero>"
+        by (metis DiffD1 I a(1) additive_subgroup.zero_closed cgenideal_ideal ideal.Icarr ideal.axioms(1))
+      then obtain q r
+        where eucl_div: "q \<in> carrier R" "r \<in> carrier R" "b = (a \<otimes> q) \<oplus> r" "r = \<zero> \<or> \<phi> r < \<phi> a"
+        using euclidean_function[of b a] a(1) b(1) ideal.Icarr[OF I] by auto
+      hence "r = \<zero> \<Longrightarrow> b \<in> PIdl a"
+        unfolding cgenideal_def using m_comm[of a] ideal.Icarr[OF I] a(1) by auto
+      hence 1: "\<phi> r < \<phi> a \<and> r \<noteq> \<zero>"
+        using eucl_div(4) b(2) by auto
+ 
+      have "r = (\<ominus> (a \<otimes> q)) \<oplus> b"
+        using eucl_div(1-3) a(1) b(1) ideal.Icarr[OF I] r_neg1 by auto
+      moreover have "\<ominus> (a \<otimes> q) \<in> I"
+        using eucl_div(1) a(1) I
+        by (meson DiffD1 additive_subgroup.a_inv_closed ideal.I_r_closed ideal.axioms(1))
+      ultimately have 2: "r \<in> I"
+        using b(1) additive_subgroup.a_closed[OF ideal.axioms(1)[OF I]] by auto
+
+      from 1 and 2 show False
+        using a(2) by fastforce
+    qed
+    thus ?thesis
+      by (meson DiffD1 I cgenideal_is_principalideal ideal.Icarr local.a(1))
+  qed
+qed
+
+sublocale field \<subseteq> euclidean_domain R "\<lambda>_. 0"
+proof (rule euclidean_domainI)
+  fix a b
+  let ?eucl_div = "\<lambda>q r. q \<in> carrier R \<and> r \<in> carrier R \<and> a = b \<otimes> q \<oplus> r \<and> (r = \<zero> \<or> 0 < 0)"
+  assume a: "a \<in> carrier R - { \<zero> }" and b: "b \<in> carrier R - { \<zero> }"
+  hence "a = b \<otimes> ((inv b) \<otimes> a) \<oplus> \<zero>"
+    by (metis DiffD1 Units_inv_closed Units_r_inv field_Units l_one m_assoc r_zero)
+  hence "?eucl_div _ ((inv b) \<otimes> a) \<zero>"
+    using a b field_Units by auto
+  thus "\<exists>q r. ?eucl_div _ q r"
+    by blast
+qed
+
+end
\ No newline at end of file