src/HOL/Complex/NSCA.thy
changeset 20559 2116b7a371c7
parent 20557 81dd3679f92c
child 20563 44eda2314aab
--- a/src/HOL/Complex/NSCA.thy	Sun Sep 17 02:53:36 2006 +0200
+++ b/src/HOL/Complex/NSCA.thy	Sun Sep 17 02:56:25 2006 +0200
@@ -10,34 +10,13 @@
 begin
 
 definition
-
-   CInfinitesimal  :: "hcomplex set"
-   "CInfinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hcmod x < r}"
-
-    capprox    :: "[hcomplex,hcomplex] => bool"  (infixl "@c=" 50)  
-      --{*the ``infinitely close'' relation*}
-      "x @c= y = ((x - y) \<in> CInfinitesimal)"     
-  
    (* standard complex numbers reagarded as an embedded subset of NS complex *)
    SComplex  :: "hcomplex set"
    "SComplex = {x. \<exists>r. x = hcomplex_of_complex r}"
 
-   CFinite :: "hcomplex set"
-   "CFinite = {x. \<exists>r \<in> Reals. hcmod x < r}"
-
-   CInfinite :: "hcomplex set"
-   "CInfinite = {x. \<forall>r \<in> Reals. r < hcmod x}"
-
    stc :: "hcomplex => hcomplex"
     --{* standard part map*}
-   "stc x = (SOME r. x \<in> CFinite & r:SComplex & r @c= x)"
-
-   cmonad    :: "hcomplex => hcomplex set"
-   "cmonad x = {y. x @c= y}"
-
-   cgalaxy   :: "hcomplex => hcomplex set"
-   "cgalaxy x = {y. (x - y) \<in> CFinite}"
-
+   "stc x = (SOME r. x \<in> HFinite & r:SComplex & r @= x)"
 
 
 subsection{*Closure Laws for SComplex, the Standard Complex Numbers*}
@@ -151,21 +130,8 @@
 
 subsection{*The Finite Elements form a Subring*}
 
-lemma CFinite_add: "[|x \<in> CFinite; y \<in> CFinite|] ==> (x+y) \<in> CFinite"
-apply (simp add: CFinite_def)
-apply (blast intro!: SReal_add hcmod_add_less)
-done
-
-lemma CFinite_mult: "[|x \<in> CFinite; y \<in> CFinite|] ==> x*y \<in> CFinite"
-apply (simp add: CFinite_def)
-apply (blast intro!: SReal_mult hcmod_mult_less)
-done
-
-lemma CFinite_minus_iff [simp]: "(-x \<in> CFinite) = (x \<in> CFinite)"
-by (simp add: CFinite_def)
-
-lemma SComplex_subset_CFinite [simp]: "SComplex \<le> CFinite"
-apply (auto simp add: SComplex_def CFinite_def)
+lemma SComplex_subset_HFinite [simp]: "SComplex \<le> HFinite"
+apply (auto simp add: SComplex_def HFinite_def)
 apply (rule_tac x = "1 + hcmod (hcomplex_of_complex r) " in bexI)
 apply (auto intro: SReal_add)
 done
@@ -174,491 +140,207 @@
      "hcmod (hcomplex_of_complex r) \<in> HFinite"
 by (auto intro!: SReal_subset_HFinite [THEN subsetD])
 
-lemma CFinite_hcomplex_of_complex [simp]: "hcomplex_of_complex x \<in> CFinite"
-by (auto intro!: SComplex_subset_CFinite [THEN subsetD])
-
-lemma CFiniteD: "x \<in> CFinite ==> \<exists>t \<in> Reals. hcmod x < t"
-by (simp add: CFinite_def)
+lemma HFinite_hcomplex_of_complex: "hcomplex_of_complex x \<in> HFinite"
+by (rule HFinite_star_of)
 
-lemma CFinite_hcmod_iff: "(x \<in> CFinite) = (hcmod x \<in> HFinite)"
-by (simp add: CFinite_def HFinite_def)
+lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)"
+by (simp add: HFinite_def)
 
-lemma CFinite_number_of [simp]: "number_of w \<in> CFinite"
-by (rule SComplex_number_of [THEN SComplex_subset_CFinite [THEN subsetD]])
-
-lemma CFinite_bounded: "[|x \<in> CFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite"
-by (auto intro: HFinite_bounded simp add: CFinite_hcmod_iff)
+lemma HFinite_bounded_hcmod:
+  "[|x \<in> HFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite"
+by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff)
 
 
 subsection{*The Complex Infinitesimals form a Subring*}
-	 
-lemma CInfinitesimal_zero [iff]: "0 \<in> CInfinitesimal"
-by (simp add: CInfinitesimal_def)
 
 lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x"
 by auto
 
-lemma CInfinitesimal_hcmod_iff: 
-   "(z \<in> CInfinitesimal) = (hcmod z \<in> Infinitesimal)"
-by (simp add: CInfinitesimal_def Infinitesimal_def)
-
-lemma one_not_CInfinitesimal [simp]: "1 \<notin> CInfinitesimal"
-by (simp add: CInfinitesimal_hcmod_iff)
+lemma Infinitesimal_hcmod_iff: 
+   "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
+by (simp add: Infinitesimal_def)
 
-lemma CInfinitesimal_add:
-     "[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> (x+y) \<in> CInfinitesimal"
-apply (auto simp add: CInfinitesimal_hcmod_iff)
-apply (rule hrabs_le_Infinitesimal)
-apply (rule_tac y = "hcmod y" in Infinitesimal_add, auto)
-done
-
-lemma CInfinitesimal_minus_iff [simp]:
-     "(-x:CInfinitesimal) = (x:CInfinitesimal)"
-by (simp add: CInfinitesimal_def)
-
-lemma CInfinitesimal_diff:
-     "[| x \<in> CInfinitesimal;  y \<in> CInfinitesimal |] ==> x-y \<in> CInfinitesimal"
-by (simp add: diff_minus CInfinitesimal_add)
-
-lemma CInfinitesimal_mult:
-     "[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> x * y \<in> CInfinitesimal"
-by (auto intro: Infinitesimal_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult)
+lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
+by (simp add: HInfinite_def)
 
-lemma CInfinitesimal_CFinite_mult:
-     "[| x \<in> CInfinitesimal; y \<in> CFinite |] ==> (x * y) \<in> CInfinitesimal"
-by (auto intro: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff hcmod_mult)
-
-lemma CInfinitesimal_CFinite_mult2:
-     "[| x \<in> CInfinitesimal; y \<in> CFinite |] ==> (y * x) \<in> CInfinitesimal"
-by (auto dest: CInfinitesimal_CFinite_mult simp add: mult_commute)
-
-lemma CInfinite_hcmod_iff: "(z \<in> CInfinite) = (hcmod z \<in> HInfinite)"
-by (simp add: CInfinite_def HInfinite_def)
+lemma HFinite_diff_Infinitesimal_hcmod:
+     "x \<in> HFinite - Infinitesimal ==> hcmod x \<in> HFinite - Infinitesimal"
+by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff)
 
-lemma CInfinite_inverse_CInfinitesimal:
-     "x \<in> CInfinite ==> inverse x \<in> CInfinitesimal"
-by (auto intro: HInfinite_inverse_Infinitesimal simp add: CInfinitesimal_hcmod_iff CInfinite_hcmod_iff hcmod_hcomplex_inverse)
-
-lemma CInfinite_mult: "[|x \<in> CInfinite; y \<in> CInfinite|] ==> (x*y): CInfinite"
-by (auto intro: HInfinite_mult simp add: CInfinite_hcmod_iff hcmod_mult)
+lemma hcmod_less_Infinitesimal:
+     "[| e \<in> Infinitesimal; hcmod x < hcmod e |] ==> x \<in> Infinitesimal"
+by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
 
-lemma CInfinite_minus_iff [simp]: "(-x \<in> CInfinite) = (x \<in> CInfinite)"
-by (simp add: CInfinite_def)
-
-lemma CFinite_sum_squares:
-     "[|a \<in> CFinite; b \<in> CFinite; c \<in> CFinite|]   
-      ==> a*a + b*b + c*c \<in> CFinite"
-by (auto intro: CFinite_mult CFinite_add)
-
-lemma not_CInfinitesimal_not_zero: "x \<notin> CInfinitesimal ==> x \<noteq> 0"
-by auto
+lemma hcmod_le_Infinitesimal:
+     "[| e \<in> Infinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> Infinitesimal"
+by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
 
-lemma not_CInfinitesimal_not_zero2: "x \<in> CFinite - CInfinitesimal ==> x \<noteq> 0"
-by auto
-
-lemma CFinite_diff_CInfinitesimal_hcmod:
-     "x \<in> CFinite - CInfinitesimal ==> hcmod x \<in> HFinite - Infinitesimal"
-by (simp add: CFinite_hcmod_iff CInfinitesimal_hcmod_iff)
-
-lemma hcmod_less_CInfinitesimal:
-     "[| e \<in> CInfinitesimal; hcmod x < hcmod e |] ==> x \<in> CInfinitesimal"
-by (auto intro: hrabs_less_Infinitesimal simp add: CInfinitesimal_hcmod_iff)
+lemma Infinitesimal_interval_hcmod:
+     "[| e \<in> Infinitesimal;  
+          e' \<in> Infinitesimal;  
+          hcmod e' < hcmod x ; hcmod x < hcmod e  
+       |] ==> x \<in> Infinitesimal"
+by (auto intro: Infinitesimal_interval simp add: Infinitesimal_hcmod_iff)
 
-lemma hcmod_le_CInfinitesimal:
-     "[| e \<in> CInfinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> CInfinitesimal"
-by (auto intro: hrabs_le_Infinitesimal simp add: CInfinitesimal_hcmod_iff)
-
-lemma CInfinitesimal_interval:
-     "[| e \<in> CInfinitesimal;  
-          e' \<in> CInfinitesimal;  
-          hcmod e' < hcmod x ; hcmod x < hcmod e  
-       |] ==> x \<in> CInfinitesimal"
-by (auto intro: Infinitesimal_interval simp add: CInfinitesimal_hcmod_iff)
-
-lemma CInfinitesimal_interval2:
-     "[| e \<in> CInfinitesimal;  
-         e' \<in> CInfinitesimal;  
+lemma Infinitesimal_interval2_hcmod:
+     "[| e \<in> Infinitesimal;  
+         e' \<in> Infinitesimal;  
          hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e  
-      |] ==> x \<in> CInfinitesimal"
-by (auto intro: Infinitesimal_interval2 simp add: CInfinitesimal_hcmod_iff)
-
-lemma not_CInfinitesimal_mult:
-     "[| x \<notin> CInfinitesimal;  y \<notin> CInfinitesimal|] ==> (x*y) \<notin> CInfinitesimal"
-apply (auto simp add: CInfinitesimal_hcmod_iff hcmod_mult)
-apply (drule not_Infinitesimal_mult, auto)
-done
-
-lemma CInfinitesimal_mult_disj:
-     "x*y \<in> CInfinitesimal ==> x \<in> CInfinitesimal | y \<in> CInfinitesimal"
-by (auto dest: Infinitesimal_mult_disj simp add: CInfinitesimal_hcmod_iff hcmod_mult)
+      |] ==> x \<in> Infinitesimal"
+by (auto intro: Infinitesimal_interval2 simp add: Infinitesimal_hcmod_iff)
 
-lemma CFinite_CInfinitesimal_diff_mult:
-     "[| x \<in> CFinite - CInfinitesimal; y \<in> CFinite - CInfinitesimal |] 
-      ==> x*y \<in> CFinite - CInfinitesimal"
-by (blast dest: CFinite_mult not_CInfinitesimal_mult)
+lemma Infinitesimal_hcomplex_of_complex_mult:
+     "x \<in> Infinitesimal ==> x * hcomplex_of_complex r \<in> Infinitesimal"
+by (auto intro!: Infinitesimal_HFinite_mult simp add: Infinitesimal_hcmod_iff hcmod_mult)
 
-lemma CInfinitesimal_subset_CFinite: "CInfinitesimal \<le> CFinite"
-by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-         simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff)
-
-lemma CInfinitesimal_hcomplex_of_complex_mult:
-     "x \<in> CInfinitesimal ==> x * hcomplex_of_complex r \<in> CInfinitesimal"
-by (auto intro!: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult)
-
-lemma CInfinitesimal_hcomplex_of_complex_mult2:
-     "x \<in> CInfinitesimal ==> hcomplex_of_complex r * x \<in> CInfinitesimal"
-by (auto intro!: Infinitesimal_HFinite_mult2 simp add: CInfinitesimal_hcmod_iff hcmod_mult)
+lemma Infinitesimal_hcomplex_of_complex_mult2:
+     "x \<in> Infinitesimal ==> hcomplex_of_complex r * x \<in> Infinitesimal"
+by (auto intro!: Infinitesimal_HFinite_mult2 simp add: Infinitesimal_hcmod_iff hcmod_mult)
 
 
 subsection{*The ``Infinitely Close'' Relation*}
 
 (*
 Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z @= hcmod w)"
-by (auto_tac (claset(),simpset() addsimps [CInfinitesimal_hcmod_iff]));
+by (auto_tac (claset(),simpset() addsimps [Infinitesimal_hcmod_iff]));
 *)
 
-lemma mem_cinfmal_iff: "x:CInfinitesimal = (x @c= 0)"
-by (simp add: CInfinitesimal_hcmod_iff capprox_def)
-
-lemma capprox_minus_iff: "(x @c= y) = (x + -y @c= 0)"
-by (simp add: capprox_def diff_minus)
-
-lemma capprox_minus_iff2: "(x @c= y) = (-y + x @c= 0)"
-by (simp add: capprox_def diff_minus add_commute)
-
-lemma capprox_refl [simp]: "x @c= x"
-by (simp add: capprox_def)
-
-lemma capprox_sym: "x @c= y ==> y @c= x"
-by (simp add: capprox_def CInfinitesimal_def hcmod_diff_commute)
-
-lemma capprox_trans: "[| x @c= y; y @c= z |] ==> x @c= z"
-apply (simp add: capprox_def)
-apply (drule CInfinitesimal_add, assumption)
-apply (simp add: diff_minus)
-done
-
-lemma capprox_trans2: "[| r @c= x; s @c= x |] ==> r @c= s"
-by (blast intro: capprox_sym capprox_trans)
+lemma approx_mult_subst_SComplex:
+     "[| u @= x*hcomplex_of_complex v; x @= y |] 
+      ==> u @= y*hcomplex_of_complex v"
+by (auto intro: approx_mult_subst2)
 
-lemma capprox_trans3: "[| x @c= r; x @c= s|] ==> r @c= s"
-by (blast intro: capprox_sym capprox_trans)
-
-lemma number_of_capprox_reorient [simp]:
-     "(number_of w @c= x) = (x @c= number_of w)"
-by (blast intro: capprox_sym)
-
-lemma CInfinitesimal_capprox_minus: "(x-y \<in> CInfinitesimal) = (x @c= y)"
-by (simp add: diff_minus capprox_minus_iff [symmetric] mem_cinfmal_iff)
-
-lemma capprox_monad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))"
-by (auto simp add: cmonad_def dest: capprox_sym elim!: capprox_trans equalityCE)
-
-lemma Infinitesimal_capprox:
-     "[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> x @c= y"
-apply (simp add: mem_cinfmal_iff)
-apply (blast intro: capprox_trans capprox_sym)
-done
-
-lemma capprox_add: "[| a @c= b; c @c= d |] ==> a+c @c= b+d"
-apply (simp add: capprox_def diff_minus) 
-apply (rule minus_add_distrib [THEN ssubst])
-apply (rule add_assoc [THEN ssubst])
-apply (rule_tac b1 = c in add_left_commute [THEN subst])
-apply (rule add_assoc [THEN subst])
-apply (blast intro: CInfinitesimal_add)
-done
+lemma approx_hcomplex_of_complex_HFinite:
+     "x @= hcomplex_of_complex D ==> x \<in> HFinite"
+by (rule approx_star_of_HFinite)
 
-lemma capprox_minus: "a @c= b ==> -a @c= -b"
-apply (rule capprox_minus_iff [THEN iffD2, THEN capprox_sym])
-apply (drule capprox_minus_iff [THEN iffD1])
-apply (simp add: add_commute)
-done
-
-lemma capprox_minus2: "-a @c= -b ==> a @c= b"
-by (auto dest: capprox_minus)
-
-lemma capprox_minus_cancel [simp]: "(-a @c= -b) = (a @c= b)"
-by (blast intro: capprox_minus capprox_minus2)
-
-lemma capprox_add_minus: "[| a @c= b; c @c= d |] ==> a + -c @c= b + -d"
-by (blast intro!: capprox_add capprox_minus)
-
-lemma capprox_mult1: 
-      "[| a @c= b; c \<in> CFinite|] ==> a*c @c= b*c"
-apply (simp add: capprox_def diff_minus)
-apply (simp only: CInfinitesimal_CFinite_mult minus_mult_left left_distrib [symmetric])
-done
-
-lemma capprox_mult2: "[|a @c= b; c \<in> CFinite|] ==> c*a @c= c*b"
-by (simp add: capprox_mult1 mult_commute)
+lemma approx_mult_hcomplex_of_complex:
+     "[|a @= hcomplex_of_complex b; c @= hcomplex_of_complex d |]  
+      ==> a*c @= hcomplex_of_complex b * hcomplex_of_complex d"
+by (rule approx_mult_star_of)
 
-lemma capprox_mult_subst:
-     "[|u @c= v*x; x @c= y; v \<in> CFinite|] ==> u @c= v*y"
-by (blast intro: capprox_mult2 capprox_trans)
-
-lemma capprox_mult_subst2:
-     "[| u @c= x*v; x @c= y; v \<in> CFinite |] ==> u @c= y*v"
-by (blast intro: capprox_mult1 capprox_trans)
-
-lemma capprox_mult_subst_SComplex:
-     "[| u @c= x*hcomplex_of_complex v; x @c= y |] 
-      ==> u @c= y*hcomplex_of_complex v"
-by (auto intro: capprox_mult_subst2)
-
-lemma capprox_eq_imp: "a = b ==> a @c= b"
-by (simp add: capprox_def)
-
-lemma CInfinitesimal_minus_capprox: "x \<in> CInfinitesimal ==> -x @c= x"
-by (blast intro: CInfinitesimal_minus_iff [THEN iffD2] mem_cinfmal_iff [THEN iffD1] capprox_trans2)
-
-lemma bex_CInfinitesimal_iff: "(\<exists>y \<in> CInfinitesimal. x - z = y) = (x @c= z)"
-by (unfold capprox_def, blast)
-
-lemma bex_CInfinitesimal_iff2: "(\<exists>y \<in> CInfinitesimal. x = z + y) = (x @c= z)"
-by (simp add: bex_CInfinitesimal_iff [symmetric], force)
-
-lemma CInfinitesimal_add_capprox:
-     "[| y \<in> CInfinitesimal; x + y = z |] ==> x @c= z"
-apply (rule bex_CInfinitesimal_iff [THEN iffD1])
-apply (drule CInfinitesimal_minus_iff [THEN iffD2])
-apply (simp add: eq_commute compare_rls)
+lemma approx_SComplex_mult_cancel_zero:
+     "[| a \<in> SComplex; a \<noteq> 0; a*x @= 0 |] ==> x @= 0"
+apply (drule SComplex_inverse [THEN SComplex_subset_HFinite [THEN subsetD]])
+apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric])
 done
 
-lemma CInfinitesimal_add_capprox_self: "y \<in> CInfinitesimal ==> x @c= x + y"
-apply (rule bex_CInfinitesimal_iff [THEN iffD1])
-apply (drule CInfinitesimal_minus_iff [THEN iffD2])
-apply (simp add: eq_commute compare_rls)
-done
-
-lemma CInfinitesimal_add_capprox_self2: "y \<in> CInfinitesimal ==> x @c= y + x"
-by (auto dest: CInfinitesimal_add_capprox_self simp add: add_commute)
-
-lemma CInfinitesimal_add_minus_capprox_self:
-     "y \<in> CInfinitesimal ==> x @c= x + -y"
-by (blast intro!: CInfinitesimal_add_capprox_self CInfinitesimal_minus_iff [THEN iffD2])
+lemma approx_mult_SComplex1: "[| a \<in> SComplex; x @= 0 |] ==> x*a @= 0"
+by (auto dest: SComplex_subset_HFinite [THEN subsetD] approx_mult1)
 
-lemma CInfinitesimal_add_cancel:
-     "[| y \<in> CInfinitesimal; x+y @c= z|] ==> x @c= z"
-apply (drule_tac x = x in CInfinitesimal_add_capprox_self [THEN capprox_sym])
-apply (erule capprox_trans3 [THEN capprox_sym], assumption)
-done
-
-lemma CInfinitesimal_add_right_cancel:
-     "[| y \<in> CInfinitesimal; x @c= z + y|] ==> x @c= z"
-apply (drule_tac x = z in CInfinitesimal_add_capprox_self2 [THEN capprox_sym])
-apply (erule capprox_trans3 [THEN capprox_sym])
-apply (simp add: add_commute)
-apply (erule capprox_sym)
-done
+lemma approx_mult_SComplex2: "[| a \<in> SComplex; x @= 0 |] ==> a*x @= 0"
+by (auto dest: SComplex_subset_HFinite [THEN subsetD] approx_mult2)
 
-lemma capprox_add_left_cancel: "d + b  @c= d + c ==> b @c= c"
-apply (drule capprox_minus_iff [THEN iffD1])
-apply (simp add: minus_add_distrib capprox_minus_iff [symmetric] add_ac)
-done
-
-lemma capprox_add_right_cancel: "b + d @c= c + d ==> b @c= c"
-apply (rule capprox_add_left_cancel)
-apply (simp add: add_commute)
-done
-
-lemma capprox_add_mono1: "b @c= c ==> d + b @c= d + c"
-apply (rule capprox_minus_iff [THEN iffD2])
-apply (simp add: capprox_minus_iff [symmetric] add_ac)
-done
+lemma approx_mult_SComplex_zero_cancel_iff [simp]:
+     "[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)"
+by (blast intro: approx_SComplex_mult_cancel_zero approx_mult_SComplex2)
 
-lemma capprox_add_mono2: "b @c= c ==> b + a @c= c + a"
-apply (simp (no_asm_simp) add: add_commute capprox_add_mono1)
-done
-
-lemma capprox_add_left_iff [iff]: "(a + b @c= a + c) = (b @c= c)"
-by (fast elim: capprox_add_left_cancel capprox_add_mono1)
-
-lemma capprox_add_right_iff [iff]: "(b + a @c= c + a) = (b @c= c)"
-by (simp add: add_commute)
-
-lemma capprox_CFinite: "[| x \<in> CFinite; x @c= y |] ==> y \<in> CFinite"
-apply (drule bex_CInfinitesimal_iff2 [THEN iffD2], safe)
-apply (drule CInfinitesimal_subset_CFinite [THEN subsetD, THEN CFinite_minus_iff [THEN iffD2]])
-apply (drule CFinite_add)
-apply (assumption, auto)
+lemma approx_SComplex_mult_cancel:
+     "[| a \<in> SComplex; a \<noteq> 0; a* w @= a*z |] ==> w @= z"
+apply (drule SComplex_inverse [THEN SComplex_subset_HFinite [THEN subsetD]])
+apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric])
 done
 
-lemma capprox_hcomplex_of_complex_CFinite:
-     "x @c= hcomplex_of_complex D ==> x \<in> CFinite"
-by (rule capprox_sym [THEN [2] capprox_CFinite], auto)
+lemma approx_SComplex_mult_cancel_iff1 [simp]:
+     "[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)"
+by (auto intro!: approx_mult2 SComplex_subset_HFinite [THEN subsetD]
+            intro: approx_SComplex_mult_cancel)
 
-lemma capprox_mult_CFinite:
-     "[|a @c= b; c @c= d; b \<in> CFinite; d \<in> CFinite|] ==> a*c @c= b*d"
-apply (rule capprox_trans)
-apply (rule_tac [2] capprox_mult2)
-apply (rule capprox_mult1)
-prefer 2 apply (blast intro: capprox_CFinite capprox_sym, auto)
-done
-
-lemma capprox_mult_hcomplex_of_complex:
-     "[|a @c= hcomplex_of_complex b; c @c= hcomplex_of_complex d |]  
-      ==> a*c @c= hcomplex_of_complex b * hcomplex_of_complex d"
-apply (blast intro!: capprox_mult_CFinite capprox_hcomplex_of_complex_CFinite CFinite_hcomplex_of_complex)
-done
-
-lemma capprox_SComplex_mult_cancel_zero:
-     "[| a \<in> SComplex; a \<noteq> 0; a*x @c= 0 |] ==> x @c= 0"
-apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]])
-apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric])
+lemma approx_hcmod_approx_zero: "(x @= y) = (hcmod (y - x) @= 0)"
+apply (subst hcmod_diff_commute)
+apply (simp add: approx_def Infinitesimal_hcmod_iff diff_minus)
 done
 
-lemma capprox_mult_SComplex1: "[| a \<in> SComplex; x @c= 0 |] ==> x*a @c= 0"
-by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult1)
-
-lemma capprox_mult_SComplex2: "[| a \<in> SComplex; x @c= 0 |] ==> a*x @c= 0"
-by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult2)
-
-lemma capprox_mult_SComplex_zero_cancel_iff [simp]:
-     "[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x @c= 0) = (x @c= 0)"
-by (blast intro: capprox_SComplex_mult_cancel_zero capprox_mult_SComplex2)
-
-lemma capprox_SComplex_mult_cancel:
-     "[| a \<in> SComplex; a \<noteq> 0; a* w @c= a*z |] ==> w @c= z"
-apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]])
-apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric])
-done
+lemma approx_approx_zero_iff: "(x @= 0) = (hcmod x @= 0)"
+by (simp add: approx_hcmod_approx_zero)
 
-lemma capprox_SComplex_mult_cancel_iff1 [simp]:
-     "[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w @c= a*z) = (w @c= z)"
-by (auto intro!: capprox_mult2 SComplex_subset_CFinite [THEN subsetD]
-            intro: capprox_SComplex_mult_cancel)
-
-lemma capprox_hcmod_approx_zero: "(x @c= y) = (hcmod (y - x) @= 0)"
-apply (rule capprox_minus_iff [THEN ssubst])
-apply (simp add: capprox_def CInfinitesimal_hcmod_iff mem_infmal_iff diff_minus [symmetric] hcmod_diff_commute)
-done
-
-lemma capprox_approx_zero_iff: "(x @c= 0) = (hcmod x @= 0)"
-by (simp add: capprox_hcmod_approx_zero)
-
-lemma capprox_minus_zero_cancel_iff [simp]: "(-x @c= 0) = (x @c= 0)"
-by (simp add: capprox_hcmod_approx_zero)
+lemma approx_minus_zero_cancel_iff [simp]: "(-x @= 0) = (x @= 0)"
+by (simp add: approx_def)
 
 lemma Infinitesimal_hcmod_add_diff:
-     "u @c= 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
+     "u @= 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
+apply (drule approx_approx_zero_iff [THEN iffD1])
 apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2)
-apply (auto dest: capprox_approx_zero_iff [THEN iffD1]
-             simp add: mem_infmal_iff [symmetric] diff_def)
+apply (auto simp add: mem_infmal_iff [symmetric] diff_def)
 apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1])
 apply (auto simp add: diff_minus [symmetric])
 done
 
-lemma approx_hcmod_add_hcmod: "u @c= 0 ==> hcmod(x + u) @= hcmod x"
+lemma approx_hcmod_add_hcmod: "u @= 0 ==> hcmod(x + u) @= hcmod x"
 apply (rule approx_minus_iff [THEN iffD2])
 apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric] diff_minus [symmetric])
 done
 
-lemma capprox_hcmod_approx: "x @c= y ==> hcmod x @= hcmod y"
+lemma approx_hcmod_approx: "x @= y ==> hcmod x @= hcmod y"
 by (auto intro: approx_hcmod_add_hcmod 
-         dest!: bex_CInfinitesimal_iff2 [THEN iffD2]
-         simp add: mem_cinfmal_iff)
+         dest!: bex_Infinitesimal_iff2 [THEN iffD2]
+         simp add: mem_infmal_iff)
 
 
 subsection{*Zero is the Only Infinitesimal Complex Number*}
 
-lemma CInfinitesimal_less_SComplex:
-   "[| x \<in> SComplex; y \<in> CInfinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x"
-by (auto intro!: Infinitesimal_less_SReal SComplex_hcmod_SReal simp add: CInfinitesimal_hcmod_iff)
+lemma Infinitesimal_less_SComplex:
+   "[| x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x"
+by (auto intro: Infinitesimal_less_SReal SComplex_hcmod_SReal simp add: Infinitesimal_hcmod_iff)
 
-lemma SComplex_Int_CInfinitesimal_zero: "SComplex Int CInfinitesimal = {0}"
-apply (auto simp add: SComplex_def CInfinitesimal_hcmod_iff)
-apply (cut_tac r = r in SReal_hcmod_hcomplex_of_complex)
-apply (drule_tac A = Reals in IntI, assumption)
-apply (subgoal_tac "hcmod (hcomplex_of_complex r) = 0")
-apply simp
-apply (simp add: SReal_Int_Infinitesimal_zero) 
-done
-
-lemma SComplex_CInfinitesimal_zero:
-     "[| x \<in> SComplex; x \<in> CInfinitesimal|] ==> x = 0"
-by (cut_tac SComplex_Int_CInfinitesimal_zero, blast)
+lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
+by (auto simp add: SComplex_def Infinitesimal_hcmod_iff)
 
-lemma SComplex_CFinite_diff_CInfinitesimal:
-     "[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> CFinite - CInfinitesimal"
-by (auto dest: SComplex_CInfinitesimal_zero SComplex_subset_CFinite [THEN subsetD])
-
-lemma hcomplex_of_complex_CFinite_diff_CInfinitesimal:
-     "hcomplex_of_complex x \<noteq> 0 
-      ==> hcomplex_of_complex x \<in> CFinite - CInfinitesimal"
-by (rule SComplex_CFinite_diff_CInfinitesimal, auto)
+lemma SComplex_Infinitesimal_zero:
+     "[| x \<in> SComplex; x \<in> Infinitesimal|] ==> x = 0"
+by (cut_tac SComplex_Int_Infinitesimal_zero, blast)
 
-lemma hcomplex_of_complex_CInfinitesimal_iff_0 [iff]:
-     "(hcomplex_of_complex x \<in> CInfinitesimal) = (x=0)"
-apply (auto)
-apply (rule ccontr)
-apply (rule hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN DiffD2], auto)
-done
+lemma SComplex_HFinite_diff_Infinitesimal:
+     "[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
+by (auto dest: SComplex_Infinitesimal_zero SComplex_subset_HFinite [THEN subsetD])
 
-lemma number_of_not_CInfinitesimal [simp]:
-     "number_of w \<noteq> (0::hcomplex) ==> number_of w \<notin> CInfinitesimal"
-by (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero])
+lemma hcomplex_of_complex_HFinite_diff_Infinitesimal:
+     "hcomplex_of_complex x \<noteq> 0 
+      ==> hcomplex_of_complex x \<in> HFinite - Infinitesimal"
+by (rule SComplex_HFinite_diff_Infinitesimal, auto)
 
-lemma capprox_SComplex_not_zero:
-     "[| y \<in> SComplex; x @c= y; y\<noteq> 0 |] ==> x \<noteq> 0"
-by (auto dest: SComplex_CInfinitesimal_zero capprox_sym [THEN mem_cinfmal_iff [THEN iffD2]])
+lemma hcomplex_of_complex_Infinitesimal_iff_0:
+     "(hcomplex_of_complex x \<in> Infinitesimal) = (x=0)"
+by (rule star_of_Infinitesimal_iff_0)
 
-lemma CFinite_diff_CInfinitesimal_capprox:
-     "[| x @c= y; y \<in> CFinite - CInfinitesimal |]  
-      ==> x \<in> CFinite - CInfinitesimal"
-apply (auto intro: capprox_sym [THEN [2] capprox_CFinite] 
-            simp add: mem_cinfmal_iff)
-apply (drule capprox_trans3, assumption)
-apply (blast dest: capprox_sym)
-done
+lemma number_of_not_Infinitesimal [simp]:
+     "number_of w \<noteq> (0::hcomplex) ==> (number_of w::hcomplex) \<notin> Infinitesimal"
+by (fast dest: SComplex_number_of [THEN SComplex_Infinitesimal_zero])
 
-lemma CInfinitesimal_ratio:
-     "[| y \<noteq> 0;  y \<in> CInfinitesimal;  x/y \<in> CFinite |] ==> x \<in> CInfinitesimal"
-apply (drule CInfinitesimal_CFinite_mult2, assumption)
-apply (simp add: divide_inverse mult_assoc)
-done
+lemma approx_SComplex_not_zero:
+     "[| y \<in> SComplex; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0"
+by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
 
-lemma SComplex_capprox_iff:
-     "[|x \<in> SComplex; y \<in> SComplex|] ==> (x @c= y) = (x = y)"
-apply auto
-apply (simp add: capprox_def)
-apply (subgoal_tac "x-y = 0", simp) 
-apply (rule SComplex_CInfinitesimal_zero)
-apply (simp add: SComplex_diff, assumption)
-done
+lemma SComplex_approx_iff:
+     "[|x \<in> SComplex; y \<in> SComplex|] ==> (x @= y) = (x = y)"
+by (auto simp add: SComplex_def)
 
-lemma number_of_capprox_iff [simp]:
-    "(number_of v @c= number_of w) = (number_of v = (number_of w :: hcomplex))"
-by (rule SComplex_capprox_iff, auto)
-
-lemma number_of_CInfinitesimal_iff [simp]:
-     "(number_of w \<in> CInfinitesimal) = (number_of w = (0::hcomplex))"
+lemma number_of_Infinitesimal_iff [simp]:
+     "((number_of w :: hcomplex) \<in> Infinitesimal) =
+      (number_of w = (0::hcomplex))"
 apply (rule iffI)
-apply (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero])
+apply (fast dest: SComplex_number_of [THEN SComplex_Infinitesimal_zero])
 apply (simp (no_asm_simp))
 done
 
-lemma hcomplex_of_complex_approx_iff [simp]:
-     "(hcomplex_of_complex k @c= hcomplex_of_complex m) = (k = m)"
-apply auto
-apply (rule inj_hcomplex_of_complex [THEN injD])
-apply (rule SComplex_capprox_iff [THEN iffD1], auto)
-done
+lemma hcomplex_of_complex_approx_iff:
+     "(hcomplex_of_complex k @= hcomplex_of_complex m) = (k = m)"
+by (rule star_of_approx_iff)
 
-lemma hcomplex_of_complex_capprox_number_of_iff [simp]:
-     "(hcomplex_of_complex k @c= number_of w) = (k = number_of w)"
+lemma hcomplex_of_complex_approx_number_of_iff [simp]:
+     "(hcomplex_of_complex k @= number_of w) = (k = number_of w)"
 by (subst hcomplex_of_complex_approx_iff [symmetric], auto)
 
-lemma capprox_unique_complex:
-     "[| r \<in> SComplex; s \<in> SComplex; r @c= x; s @c= x|] ==> r = s"
-by (blast intro: SComplex_capprox_iff [THEN iffD1] capprox_trans2)
+lemma approx_unique_complex:
+     "[| r \<in> SComplex; s \<in> SComplex; r @= x; s @= x|] ==> r = s"
+by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
 
-lemma hcomplex_capproxD1:
-     "star_n X @c= star_n Y
+lemma hcomplex_approxD1:
+     "star_n X @= star_n Y
       ==> star_n (%n. Re(X n)) @= star_n (%n. Re(Y n))"
-apply (simp add: approx_FreeUltrafilterNat_iff2, safe)
-apply (drule capprox_minus_iff [THEN iffD1])
-apply (simp add: star_n_minus star_n_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2)
+apply (simp (no_asm) add: approx_FreeUltrafilterNat_iff2, safe)
+apply (drule approx_minus_iff [THEN iffD1])
+apply (simp add: star_n_minus star_n_add mem_infmal_iff [symmetric] Infinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2)
 apply (drule_tac x = m in spec)
 apply (erule ultra, rule FreeUltrafilterNat_all, clarify)
 apply (rule_tac y="cmod (X n + - Y n)" in order_le_less_trans)
@@ -669,12 +351,12 @@
 done
 
 (* same proof *)
-lemma hcomplex_capproxD2:
-     "star_n X @c= star_n Y
+lemma hcomplex_approxD2:
+     "star_n X @= star_n Y
       ==> star_n (%n. Im(X n)) @= star_n (%n. Im(Y n))"
-apply (simp add: approx_FreeUltrafilterNat_iff2, safe)
-apply (drule capprox_minus_iff [THEN iffD1])
-apply (simp add: star_n_minus star_n_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2)
+apply (simp (no_asm) add: approx_FreeUltrafilterNat_iff2, safe)
+apply (drule approx_minus_iff [THEN iffD1])
+apply (simp add: star_n_minus star_n_add mem_infmal_iff [symmetric] Infinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2)
 apply (drule_tac x = m in spec)
 apply (erule ultra, rule FreeUltrafilterNat_all, clarify)
 apply (rule_tac y="cmod (X n + - Y n)" in order_le_less_trans)
@@ -684,14 +366,14 @@
             simp del: realpow_Suc)
 done
 
-lemma hcomplex_capproxI:
+lemma hcomplex_approxI:
      "[| star_n (%n. Re(X n)) @= star_n (%n. Re(Y n));  
          star_n (%n. Im(X n)) @= star_n (%n. Im(Y n))  
-      |] ==> star_n X @c= star_n Y"
+      |] ==> star_n X @= star_n Y"
 apply (drule approx_minus_iff [THEN iffD1])
 apply (drule approx_minus_iff [THEN iffD1])
-apply (rule capprox_minus_iff [THEN iffD2])
-apply (auto simp add: mem_cinfmal_iff [symmetric] mem_infmal_iff [symmetric] star_n_add star_n_minus CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff)
+apply (rule approx_minus_iff [THEN iffD2])
+apply (auto simp add: mem_infmal_iff [symmetric] mem_infmal_iff [symmetric] star_n_add star_n_minus Infinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff)
 apply (drule_tac x = "u/2" in spec)
 apply (drule_tac x = "u/2" in spec, auto, ultra)
 apply (case_tac "X x")
@@ -703,23 +385,23 @@
 apply (simp add: power2_eq_square)
 done
 
-lemma capprox_approx_iff:
-     "(star_n X @c= star_n Y) = 
+lemma approx_approx_iff:
+     "(star_n X @= star_n Y) = 
        (star_n (%n. Re(X n)) @= star_n (%n. Re(Y n)) &  
         star_n (%n. Im(X n)) @= star_n (%n. Im(Y n)))"
-apply (blast intro: hcomplex_capproxI hcomplex_capproxD1 hcomplex_capproxD2)
+apply (blast intro: hcomplex_approxI hcomplex_approxD1 hcomplex_approxD2)
 done
 
-lemma hcomplex_of_hypreal_capprox_iff [simp]:
-     "(hcomplex_of_hypreal x @c= hcomplex_of_hypreal z) = (x @= z)"
+lemma hcomplex_of_hypreal_approx_iff [simp]:
+     "(hcomplex_of_hypreal x @= hcomplex_of_hypreal z) = (x @= z)"
 apply (cases x, cases z)
-apply (simp add: hcomplex_of_hypreal capprox_approx_iff)
+apply (simp add: hcomplex_of_hypreal approx_approx_iff)
 done
 
-lemma CFinite_HFinite_Re:
-     "star_n X \<in> CFinite  
+lemma HFinite_HFinite_Re:
+     "star_n X \<in> HFinite  
       ==> star_n (%n. Re(X n)) \<in> HFinite"
-apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
+apply (auto simp add: HFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
 apply (rule_tac x = u in exI, ultra)
 apply (case_tac "X x")
 apply (auto simp add: complex_mod numeral_2_eq_2 simp del: realpow_Suc)
@@ -729,10 +411,10 @@
 apply (auto simp add: numeral_2_eq_2 [symmetric]) 
 done
 
-lemma CFinite_HFinite_Im:
-     "star_n X \<in> CFinite  
+lemma HFinite_HFinite_Im:
+     "star_n X \<in> HFinite  
       ==> star_n (%n. Im(X n)) \<in> HFinite"
-apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
+apply (auto simp add: HFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
 apply (rule_tac x = u in exI, ultra)
 apply (case_tac "X x")
 apply (auto simp add: complex_mod simp del: realpow_Suc)
@@ -741,11 +423,11 @@
 apply (drule real_sqrt_ge_abs2 [THEN [2] order_less_le_trans], auto) 
 done
 
-lemma HFinite_Re_Im_CFinite:
+lemma HFinite_Re_Im_HFinite:
      "[| star_n (%n. Re(X n)) \<in> HFinite;  
          star_n (%n. Im(X n)) \<in> HFinite  
-      |] ==> star_n X \<in> CFinite"
-apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
+      |] ==> star_n X \<in> HFinite"
+apply (auto simp add: HFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff)
 apply (rename_tac u v)
 apply (rule_tac x = "2* (u + v) " in exI)
 apply ultra
@@ -760,11 +442,11 @@
 apply (simp add: power2_eq_square)
 done
 
-lemma CFinite_HFinite_iff:
-     "(star_n X \<in> CFinite) =  
+lemma HFinite_HFinite_iff:
+     "(star_n X \<in> HFinite) =  
       (star_n (%n. Re(X n)) \<in> HFinite &  
        star_n (%n. Im(X n)) \<in> HFinite)"
-by (blast intro: HFinite_Re_Im_CFinite CFinite_HFinite_Im CFinite_HFinite_Re)
+by (blast intro: HFinite_Re_Im_HFinite HFinite_HFinite_Im HFinite_HFinite_Re)
 
 lemma SComplex_Re_SReal:
      "star_n X \<in> SComplex  
@@ -794,11 +476,11 @@
        star_n (%n. Im(X n)) \<in> Reals)"
 by (blast intro: SComplex_Re_SReal SComplex_Im_SReal Reals_Re_Im_SComplex)
 
-lemma CInfinitesimal_Infinitesimal_iff:
-     "(star_n X \<in> CInfinitesimal) =  
+lemma Infinitesimal_Infinitesimal_iff:
+     "(star_n X \<in> Infinitesimal) =  
       (star_n (%n. Re(X n)) \<in> Infinitesimal &  
        star_n (%n. Im(X n)) \<in> Infinitesimal)"
-by (simp add: mem_cinfmal_iff mem_infmal_iff star_n_zero_num capprox_approx_iff)
+by (simp add: mem_infmal_iff star_n_zero_num approx_approx_iff)
 
 lemma eq_Abs_star_EX:
      "(\<exists>t. P t) = (\<exists>X. P (star_n X))"
@@ -809,9 +491,9 @@
 by (simp add: Bex_def ex_star_eq)
 
 (* Here we go - easy proof now!! *)
-lemma stc_part_Ex: "x:CFinite ==> \<exists>t \<in> SComplex. x @c= t"
+lemma stc_part_Ex: "x:HFinite ==> \<exists>t \<in> SComplex. x @= t"
 apply (cases x)
-apply (auto simp add: CFinite_HFinite_iff eq_Abs_star_Bex SComplex_SReal_iff capprox_approx_iff)
+apply (auto simp add: HFinite_HFinite_iff eq_Abs_star_Bex SComplex_SReal_iff approx_approx_iff)
 apply (drule st_part_Ex, safe)+
 apply (rule_tac x = t in star_cases)
 apply (rule_tac x = ta in star_cases, auto)
@@ -819,215 +501,99 @@
 apply auto
 done
 
-lemma stc_part_Ex1: "x:CFinite ==> EX! t. t \<in> SComplex &  x @c= t"
+lemma stc_part_Ex1: "x:HFinite ==> EX! t. t \<in> SComplex &  x @= t"
 apply (drule stc_part_Ex, safe)
-apply (drule_tac [2] capprox_sym, drule_tac [2] capprox_sym, drule_tac [2] capprox_sym)
-apply (auto intro!: capprox_unique_complex)
-done
-
-lemma CFinite_Int_CInfinite_empty: "CFinite Int CInfinite = {}"
-by (simp add: CFinite_def CInfinite_def, auto)
-
-lemma CFinite_not_CInfinite: "x \<in> CFinite ==> x \<notin> CInfinite"
-by (insert CFinite_Int_CInfinite_empty, blast)
-
-text{*Not sure this is a good idea!*}
-declare CFinite_Int_CInfinite_empty [simp]
-
-lemma not_CFinite_CInfinite: "x\<notin> CFinite ==> x \<in> CInfinite"
-by (auto intro: not_HFinite_HInfinite simp add: CFinite_hcmod_iff CInfinite_hcmod_iff)
-
-lemma CInfinite_CFinite_disj: "x \<in> CInfinite | x \<in> CFinite"
-by (blast intro: not_CFinite_CInfinite)
-
-lemma CInfinite_CFinite_iff: "(x \<in> CInfinite) = (x \<notin> CFinite)"
-by (blast dest: CFinite_not_CInfinite not_CFinite_CInfinite)
-
-lemma CFinite_CInfinite_iff: "(x \<in> CFinite) = (x \<notin> CInfinite)"
-by (simp add: CInfinite_CFinite_iff)
-
-lemma CInfinite_diff_CFinite_CInfinitesimal_disj:
-     "x \<notin> CInfinitesimal ==> x \<in> CInfinite | x \<in> CFinite - CInfinitesimal"
-by (fast intro: not_CFinite_CInfinite)
-
-lemma CFinite_inverse:
-     "[| x \<in> CFinite; x \<notin> CInfinitesimal |] ==> inverse x \<in> CFinite"
-apply (cut_tac x = "inverse x" in CInfinite_CFinite_disj)
-apply (auto dest!: CInfinite_inverse_CInfinitesimal)
-done
-
-lemma CFinite_inverse2: "x \<in> CFinite - CInfinitesimal ==> inverse x \<in> CFinite"
-by (blast intro: CFinite_inverse)
-
-lemma CInfinitesimal_inverse_CFinite:
-     "x \<notin> CInfinitesimal ==> inverse(x) \<in> CFinite"
-apply (drule CInfinite_diff_CFinite_CInfinitesimal_disj)
-apply (blast intro: CFinite_inverse CInfinite_inverse_CInfinitesimal CInfinitesimal_subset_CFinite [THEN subsetD])
+apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
+apply (auto intro!: approx_unique_complex)
 done
 
-
-lemma CFinite_not_CInfinitesimal_inverse:
-     "x \<in> CFinite - CInfinitesimal ==> inverse x \<in> CFinite - CInfinitesimal"
-apply (auto intro: CInfinitesimal_inverse_CFinite)
-apply (drule CInfinitesimal_CFinite_mult2, assumption)
-apply (simp add: not_CInfinitesimal_not_zero)
-done
-
-lemma capprox_inverse:
-     "[| x @c= y; y \<in>  CFinite - CInfinitesimal |] ==> inverse x @c= inverse y"
-apply (frule CFinite_diff_CInfinitesimal_capprox, assumption)
-apply (frule not_CInfinitesimal_not_zero2)
-apply (frule_tac x = x in not_CInfinitesimal_not_zero2)
-apply (drule CFinite_inverse2)+
-apply (drule capprox_mult2, assumption, auto)
-apply (drule_tac c = "inverse x" in capprox_mult1, assumption)
-apply (auto intro: capprox_sym simp add: mult_assoc)
-done
-
-lemmas hcomplex_of_complex_capprox_inverse =
-  hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN [2] capprox_inverse]
-
-lemma inverse_add_CInfinitesimal_capprox:
-     "[| x \<in> CFinite - CInfinitesimal;  
-         h \<in> CInfinitesimal |] ==> inverse(x + h) @c= inverse x"
-by (auto intro: capprox_inverse capprox_sym CInfinitesimal_add_capprox_self)
-
-lemma inverse_add_CInfinitesimal_capprox2:
-     "[| x \<in> CFinite - CInfinitesimal;  
-         h \<in> CInfinitesimal |] ==> inverse(h + x) @c= inverse x"
-apply (rule add_commute [THEN subst])
-apply (blast intro: inverse_add_CInfinitesimal_capprox)
-done
-
-lemma inverse_add_CInfinitesimal_approx_CInfinitesimal:
-     "[| x \<in> CFinite - CInfinitesimal;  
-         h \<in> CInfinitesimal |] ==> inverse(x + h) - inverse x @c= h"
-apply (rule capprox_trans2)
-apply (auto intro: inverse_add_CInfinitesimal_capprox 
-       simp add: mem_cinfmal_iff diff_minus capprox_minus_iff [symmetric])
-done
-
-lemma CInfinitesimal_square_iff [iff]:
-     "(x*x \<in> CInfinitesimal) = (x \<in> CInfinitesimal)"
-by (simp add: CInfinitesimal_hcmod_iff hcmod_mult)
-
-lemma capprox_CFinite_mult_cancel:
-     "[| a \<in> CFinite-CInfinitesimal; a*w @c= a*z |] ==> w @c= z"
-apply safe
-apply (frule CFinite_inverse, assumption)
-apply (drule not_CInfinitesimal_not_zero)
-apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric])
-done
-
-lemma capprox_CFinite_mult_cancel_iff1:
-     "a \<in> CFinite-CInfinitesimal ==> (a * w @c= a * z) = (w @c= z)"
-by (auto intro: capprox_mult2 capprox_CFinite_mult_cancel)
+lemmas hcomplex_of_complex_approx_inverse =
+  hcomplex_of_complex_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
 
 
 subsection{*Theorems About Monads*}
 
-lemma capprox_cmonad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))"
-apply (simp add: cmonad_def)
-apply (auto dest: capprox_sym elim!: capprox_trans equalityCE)
-done
-
-lemma CInfinitesimal_cmonad_eq:
-     "e \<in> CInfinitesimal ==> cmonad (x+e) = cmonad x"
-by (fast intro!: CInfinitesimal_add_capprox_self [THEN capprox_sym] capprox_cmonad_iff [THEN iffD1])
-
-lemma mem_cmonad_iff: "(u \<in> cmonad x) = (-u \<in> cmonad (-x))"
-by (simp add: cmonad_def)
-
-lemma CInfinitesimal_cmonad_zero_iff: "(x:CInfinitesimal) = (x \<in> cmonad 0)"
-by (auto intro: capprox_sym simp add: mem_cinfmal_iff cmonad_def)
-
-lemma cmonad_zero_minus_iff: "(x \<in> cmonad 0) = (-x \<in> cmonad 0)"
-by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric])
-
-lemma cmonad_zero_hcmod_iff: "(x \<in> cmonad 0) = (hcmod x:monad 0)"
-by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric] CInfinitesimal_hcmod_iff Infinitesimal_monad_zero_iff [symmetric])
-
-lemma mem_cmonad_self [simp]: "x \<in> cmonad x"
-by (simp add: cmonad_def)
+lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x:monad 0)"
+by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
 
 
 subsection{*Theorems About Standard Part*}
 
-lemma stc_capprox_self: "x \<in> CFinite ==> stc x @c= x"
+lemma stc_approx_self: "x \<in> HFinite ==> stc x @= x"
 apply (simp add: stc_def)
 apply (frule stc_part_Ex, safe)
 apply (rule someI2)
-apply (auto intro: capprox_sym)
+apply (auto intro: approx_sym)
 done
 
-lemma stc_SComplex: "x \<in> CFinite ==> stc x \<in> SComplex"
+lemma stc_SComplex: "x \<in> HFinite ==> stc x \<in> SComplex"
 apply (simp add: stc_def)
 apply (frule stc_part_Ex, safe)
 apply (rule someI2)
-apply (auto intro: capprox_sym)
+apply (auto intro: approx_sym)
 done
 
-lemma stc_CFinite: "x \<in> CFinite ==> stc x \<in> CFinite"
-by (erule stc_SComplex [THEN SComplex_subset_CFinite [THEN subsetD]])
+lemma stc_HFinite: "x \<in> HFinite ==> stc x \<in> HFinite"
+by (erule stc_SComplex [THEN SComplex_subset_HFinite [THEN subsetD]])
 
 lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x"
 apply (simp add: stc_def)
 apply (rule some_equality)
-apply (auto intro: SComplex_subset_CFinite [THEN subsetD])
-apply (blast dest: SComplex_capprox_iff [THEN iffD1])
+apply (auto intro: SComplex_subset_HFinite [THEN subsetD])
+apply (blast dest: SComplex_approx_iff [THEN iffD1])
 done
 
 lemma stc_hcomplex_of_complex:
      "stc (hcomplex_of_complex x) = hcomplex_of_complex x"
 by auto
 
-lemma stc_eq_capprox:
-     "[| x \<in> CFinite; y \<in> CFinite; stc x = stc y |] ==> x @c= y"
-by (auto dest!: stc_capprox_self elim!: capprox_trans3)
+lemma stc_eq_approx:
+     "[| x \<in> HFinite; y \<in> HFinite; stc x = stc y |] ==> x @= y"
+by (auto dest!: stc_approx_self elim!: approx_trans3)
 
-lemma capprox_stc_eq:
-     "[| x \<in> CFinite; y \<in> CFinite; x @c= y |] ==> stc x = stc y"
-by (blast intro: capprox_trans capprox_trans2 SComplex_capprox_iff [THEN iffD1]
-          dest: stc_capprox_self stc_SComplex)
+lemma approx_stc_eq:
+     "[| x \<in> HFinite; y \<in> HFinite; x @= y |] ==> stc x = stc y"
+by (blast intro: approx_trans approx_trans2 SComplex_approx_iff [THEN iffD1]
+          dest: stc_approx_self stc_SComplex)
 
-lemma stc_eq_capprox_iff:
-     "[| x \<in> CFinite; y \<in> CFinite|] ==> (x @c= y) = (stc x = stc y)"
-by (blast intro: capprox_stc_eq stc_eq_capprox)
+lemma stc_eq_approx_iff:
+     "[| x \<in> HFinite; y \<in> HFinite|] ==> (x @= y) = (stc x = stc y)"
+by (blast intro: approx_stc_eq stc_eq_approx)
 
-lemma stc_CInfinitesimal_add_SComplex:
-     "[| x \<in> SComplex; e \<in> CInfinitesimal |] ==> stc(x + e) = x"
+lemma stc_Infinitesimal_add_SComplex:
+     "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(x + e) = x"
 apply (frule stc_SComplex_eq [THEN subst])
 prefer 2 apply assumption
-apply (frule SComplex_subset_CFinite [THEN subsetD])
-apply (frule CInfinitesimal_subset_CFinite [THEN subsetD])
+apply (frule SComplex_subset_HFinite [THEN subsetD])
+apply (frule Infinitesimal_subset_HFinite [THEN subsetD])
 apply (drule stc_SComplex_eq)
-apply (rule capprox_stc_eq)
-apply (auto intro: CFinite_add simp add: CInfinitesimal_add_capprox_self [THEN capprox_sym])
+apply (rule approx_stc_eq)
+apply (auto intro: HFinite_add simp add: Infinitesimal_add_approx_self [THEN approx_sym])
 done
 
-lemma stc_CInfinitesimal_add_SComplex2:
-     "[| x \<in> SComplex; e \<in> CInfinitesimal |] ==> stc(e + x) = x"
+lemma stc_Infinitesimal_add_SComplex2:
+     "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(e + x) = x"
 apply (rule add_commute [THEN subst])
-apply (blast intro!: stc_CInfinitesimal_add_SComplex)
+apply (blast intro!: stc_Infinitesimal_add_SComplex)
 done
 
-lemma CFinite_stc_CInfinitesimal_add:
-     "x \<in> CFinite ==> \<exists>e \<in> CInfinitesimal. x = stc(x) + e"
-by (blast dest!: stc_capprox_self [THEN capprox_sym] bex_CInfinitesimal_iff2 [THEN iffD2])
+lemma HFinite_stc_Infinitesimal_add:
+     "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
+by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
 
 lemma stc_add:
-     "[| x \<in> CFinite; y \<in> CFinite |] ==> stc (x + y) = stc(x) + stc(y)"
-apply (frule CFinite_stc_CInfinitesimal_add)
-apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe)
+     "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x + y) = stc(x) + stc(y)"
+apply (frule HFinite_stc_Infinitesimal_add)
+apply (frule_tac x = y in HFinite_stc_Infinitesimal_add, safe)
 apply (subgoal_tac "stc (x + y) = stc ((stc x + e) + (stc y + ea))")
 apply (drule_tac [2] sym, drule_tac [2] sym)
  prefer 2 apply simp 
 apply (simp (no_asm_simp) add: add_ac)
 apply (drule stc_SComplex)+
 apply (drule SComplex_add, assumption)
-apply (drule CInfinitesimal_add, assumption)
+apply (drule Infinitesimal_add, assumption)
 apply (rule add_assoc [THEN subst])
-apply (blast intro!: stc_CInfinitesimal_add_SComplex2)
+apply (blast intro!: stc_Infinitesimal_add_SComplex2)
 done
 
 lemma stc_number_of [simp]: "stc (number_of w) = number_of w"
@@ -1039,37 +605,26 @@
 lemma stc_one [simp]: "stc 1 = 1"
 by simp
 
-lemma stc_minus: "y \<in> CFinite ==> stc(-y) = -stc(y)"
-apply (frule CFinite_minus_iff [THEN iffD2])
+lemma stc_minus: "y \<in> HFinite ==> stc(-y) = -stc(y)"
+apply (frule HFinite_minus_iff [THEN iffD2])
 apply (rule hcomplex_add_minus_eq_minus)
 apply (drule stc_add [symmetric], assumption)
 apply (simp add: add_commute)
 done
 
 lemma stc_diff: 
-     "[| x \<in> CFinite; y \<in> CFinite |] ==> stc (x-y) = stc(x) - stc(y)"
+     "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x-y) = stc(x) - stc(y)"
 apply (simp add: diff_minus)
 apply (frule_tac y1 = y in stc_minus [symmetric])
-apply (drule_tac x1 = y in CFinite_minus_iff [THEN iffD2])
+apply (drule_tac x1 = y in HFinite_minus_iff [THEN iffD2])
 apply (auto intro: stc_add)
 done
 
-lemma lemma_stc_mult:
-     "[| x \<in> CFinite; y \<in> CFinite;  
-         e \<in> CInfinitesimal;        
-         ea: CInfinitesimal |]    
-       ==> e*y + x*ea + e*ea: CInfinitesimal"
-apply (frule_tac x = e and y = y in CInfinitesimal_CFinite_mult)
-apply (frule_tac [2] x = ea and y = x in CInfinitesimal_CFinite_mult)
-apply (drule_tac [3] CInfinitesimal_mult)
-apply (auto intro: CInfinitesimal_add simp add: add_ac mult_ac)
-done
-
 lemma stc_mult:
-     "[| x \<in> CFinite; y \<in> CFinite |]  
+     "[| x \<in> HFinite; y \<in> HFinite |]  
                ==> stc (x * y) = stc(x) * stc(y)"
-apply (frule CFinite_stc_CInfinitesimal_add)
-apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe)
+apply (frule HFinite_stc_Infinitesimal_add)
+apply (frule_tac x = y in HFinite_stc_Infinitesimal_add, safe)
 apply (subgoal_tac "stc (x * y) = stc ((stc x + e) * (stc y + ea))")
 apply (drule_tac [2] sym, drule_tac [2] sym)
  prefer 2 apply simp 
@@ -1078,43 +633,43 @@
 apply (simp add: left_distrib right_distrib)
 apply (drule stc_SComplex)+
 apply (simp (no_asm_use) add: add_assoc)
-apply (rule stc_CInfinitesimal_add_SComplex)
+apply (rule stc_Infinitesimal_add_SComplex)
 apply (blast intro!: SComplex_mult)
-apply (drule SComplex_subset_CFinite [THEN subsetD])+
+apply (drule SComplex_subset_HFinite [THEN subsetD])+
 apply (rule add_assoc [THEN subst])
-apply (blast intro!: lemma_stc_mult)
+apply (blast intro!: lemma_st_mult)
 done
 
-lemma stc_CInfinitesimal: "x \<in> CInfinitesimal ==> stc x = 0"
+lemma stc_Infinitesimal: "x \<in> Infinitesimal ==> stc x = 0"
 apply (rule stc_zero [THEN subst])
-apply (rule capprox_stc_eq)
-apply (auto intro: CInfinitesimal_subset_CFinite [THEN subsetD]
-                 simp add: mem_cinfmal_iff [symmetric])
+apply (rule approx_stc_eq)
+apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
+                 simp add: mem_infmal_iff [symmetric])
 done
 
-lemma stc_not_CInfinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> CInfinitesimal"
-by (fast intro: stc_CInfinitesimal)
+lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
+by (fast intro: stc_Infinitesimal)
 
 lemma stc_inverse:
-     "[| x \<in> CFinite; stc x \<noteq> 0 |]  
+     "[| x \<in> HFinite; stc x \<noteq> 0 |]  
       ==> stc(inverse x) = inverse (stc x)"
 apply (rule_tac c1 = "stc x" in hcomplex_mult_left_cancel [THEN iffD1])
-apply (auto simp add: stc_mult [symmetric] stc_not_CInfinitesimal CFinite_inverse)
+apply (auto simp add: stc_mult [symmetric] stc_not_Infinitesimal HFinite_inverse)
 apply (subst right_inverse, auto)
 done
 
 lemma stc_divide [simp]:
-     "[| x \<in> CFinite; y \<in> CFinite; stc y \<noteq> 0 |]  
+     "[| x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0 |]  
       ==> stc(x/y) = (stc x) / (stc y)"
-by (simp add: divide_inverse stc_mult stc_not_CInfinitesimal CFinite_inverse stc_inverse)
+by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
 
-lemma stc_idempotent [simp]: "x \<in> CFinite ==> stc(stc(x)) = stc(x)"
-by (blast intro: stc_CFinite stc_capprox_self capprox_stc_eq)
+lemma stc_idempotent [simp]: "x \<in> HFinite ==> stc(stc(x)) = stc(x)"
+by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
 
-lemma CFinite_HFinite_hcomplex_of_hypreal:
-     "z \<in> HFinite ==> hcomplex_of_hypreal z \<in> CFinite"
+lemma HFinite_HFinite_hcomplex_of_hypreal:
+     "z \<in> HFinite ==> hcomplex_of_hypreal z \<in> HFinite"
 apply (cases z)
-apply (simp add: hcomplex_of_hypreal CFinite_HFinite_iff star_n_zero_num [symmetric])
+apply (simp add: hcomplex_of_hypreal HFinite_HFinite_iff star_n_zero_num [symmetric])
 done
 
 lemma SComplex_SReal_hcomplex_of_hypreal:
@@ -1128,44 +683,44 @@
 apply (frule st_part_Ex, safe)
 apply (rule someI2)
 apply (auto intro: approx_sym)
-apply (drule CFinite_HFinite_hcomplex_of_hypreal)
+apply (drule HFinite_HFinite_hcomplex_of_hypreal)
 apply (frule stc_part_Ex, safe)
 apply (rule someI2)
-apply (auto intro: capprox_sym intro!: capprox_unique_complex dest: SComplex_SReal_hcomplex_of_hypreal)
+apply (auto intro: approx_sym intro!: approx_unique_complex dest: SComplex_SReal_hcomplex_of_hypreal)
 done
 
 (*
-Goal "x \<in> CFinite ==> hcmod(stc x) = st(hcmod x)"
-by (dtac stc_capprox_self 1)
-by (auto_tac (claset(),simpset() addsimps [bex_CInfinitesimal_iff2 RS sym]));
+Goal "x \<in> HFinite ==> hcmod(stc x) = st(hcmod x)"
+by (dtac stc_approx_self 1)
+by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym]));
 
 
 approx_hcmod_add_hcmod
 *)
 
-lemma CInfinitesimal_hcnj_iff [simp]:
-     "(hcnj z \<in> CInfinitesimal) = (z \<in> CInfinitesimal)"
-by (simp add: CInfinitesimal_hcmod_iff)
+lemma Infinitesimal_hcnj_iff [simp]:
+     "(hcnj z \<in> Infinitesimal) = (z \<in> Infinitesimal)"
+by (simp add: Infinitesimal_hcmod_iff)
 
-lemma CInfinite_HInfinite_iff:
-     "(star_n X \<in> CInfinite) =  
+lemma HInfinite_HInfinite_iff:
+     "(star_n X \<in> HInfinite) =  
       (star_n (%n. Re(X n)) \<in> HInfinite |  
        star_n (%n. Im(X n)) \<in> HInfinite)"
-by (simp add: CInfinite_CFinite_iff HInfinite_HFinite_iff CFinite_HFinite_iff)
+by (simp add: HInfinite_HFinite_iff HFinite_HFinite_iff)
 
 text{*These theorems should probably be deleted*}
-lemma hcomplex_split_CInfinitesimal_iff:
-     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CInfinitesimal) =  
+lemma hcomplex_split_Infinitesimal_iff:
+     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> Infinitesimal) =  
       (x \<in> Infinitesimal & y \<in> Infinitesimal)"
 apply (cases x, cases y)
-apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal CInfinitesimal_Infinitesimal_iff)
+apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal Infinitesimal_Infinitesimal_iff)
 done
 
-lemma hcomplex_split_CFinite_iff:
-     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CFinite) =  
+lemma hcomplex_split_HFinite_iff:
+     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> HFinite) =  
       (x \<in> HFinite & y \<in> HFinite)"
 apply (cases x, cases y)
-apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal CFinite_HFinite_iff)
+apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal HFinite_HFinite_iff)
 done
 
 lemma hcomplex_split_SComplex_iff:
@@ -1175,38 +730,36 @@
 apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal SComplex_SReal_iff)
 done
 
-lemma hcomplex_split_CInfinite_iff:
-     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CInfinite) =  
+lemma hcomplex_split_HInfinite_iff:
+     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> HInfinite) =  
       (x \<in> HInfinite | y \<in> HInfinite)"
 apply (cases x, cases y)
-apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal CInfinite_HInfinite_iff)
+apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal HInfinite_HInfinite_iff)
 done
 
-lemma hcomplex_split_capprox_iff:
-     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y @c=  
+lemma hcomplex_split_approx_iff:
+     "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y @=  
        hcomplex_of_hypreal x' + iii * hcomplex_of_hypreal y') =  
       (x @= x' & y @= y')"
 apply (cases x, cases y, cases x', cases y')
-apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal capprox_approx_iff)
+apply (simp add: iii_def star_of_def star_n_add star_n_mult hcomplex_of_hypreal approx_approx_iff)
 done
 
-lemma complex_seq_to_hcomplex_CInfinitesimal:
+lemma complex_seq_to_hcomplex_Infinitesimal:
      "\<forall>n. cmod (X n - x) < inverse (real (Suc n)) ==>  
-      star_n X - hcomplex_of_complex x \<in> CInfinitesimal"
-apply (simp add: star_n_diff CInfinitesimal_hcmod_iff star_of_def Infinitesimal_FreeUltrafilterNat_iff hcmod)
-apply (auto dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat_all FreeUltrafilterNat_Int intro: order_less_trans FreeUltrafilterNat_subset)
-done
+      star_n X - hcomplex_of_complex x \<in> Infinitesimal"
+by (rule real_seq_to_hypreal_Infinitesimal [folded diff_def])
 
-lemma CInfinitesimal_hcomplex_of_hypreal_epsilon [simp]:
-     "hcomplex_of_hypreal epsilon \<in> CInfinitesimal"
-by (simp add: CInfinitesimal_hcmod_iff)
+lemma Infinitesimal_hcomplex_of_hypreal_epsilon [simp]:
+     "hcomplex_of_hypreal epsilon \<in> Infinitesimal"
+by (simp add: Infinitesimal_hcmod_iff)
 
 lemma hcomplex_of_complex_approx_zero_iff [simp]:
-     "(hcomplex_of_complex z @c= 0) = (z = 0)"
+     "(hcomplex_of_complex z @= 0) = (z = 0)"
 by (simp add: star_of_zero [symmetric] del: star_of_zero)
 
 lemma hcomplex_of_complex_approx_zero_iff2 [simp]:
-     "(0 @c= hcomplex_of_complex z) = (z = 0)"
+     "(0 @= hcomplex_of_complex z) = (z = 0)"
 by (simp add: star_of_zero [symmetric] del: star_of_zero)
 
 end