src/HOL/Real/HahnBanach/FunctionNorm.thy
changeset 9379 21cfeae6659d
parent 9374 153853af318b
child 9394 1ff8a6234c6a
--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon Jul 17 15:06:08 2000 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon Jul 17 18:17:54 2000 +0200
@@ -20,14 +20,14 @@
   is_continuous ::
   "['a::{plus, minus, zero} set, 'a => real, 'a => real] => bool" 
   "is_continuous V norm f == 
-    is_linearform V f \<and> (\<exists>c. \<forall>x \<in> V. |f x| <= c * norm x)"
+    is_linearform V f \\<and> (\\<exists>c. \\<forall>x \\<in> V. |f x| <= c * norm x)"
 
 lemma continuousI [intro]: 
-  "[| is_linearform V f; !! x. x \<in> V ==> |f x| <= c * norm x |] 
+  "[| is_linearform V f; !! x. x \\<in> V ==> |f x| <= c * norm x |] 
   ==> is_continuous V norm f"
 proof (unfold is_continuous_def, intro exI conjI ballI)
-  assume r: "!! x. x \<in> V ==> |f x| <= c * norm x" 
-  fix x assume "x \<in> V" show "|f x| <= c * norm x" by (rule r)
+  assume r: "!! x. x \\<in> V ==> |f x| <= c * norm x" 
+  fix x assume "x \\<in> V" show "|f x| <= c * norm x" by (rule r)
 qed
   
 lemma continuous_linearform [intro??]: 
@@ -36,7 +36,7 @@
 
 lemma continuous_bounded [intro??]:
   "is_continuous V norm f 
-  ==> \<exists>c. \<forall>x \<in> V. |f x| <= c * norm x"
+  ==> \\<exists>c. \\<forall>x \\<in> V. |f x| <= c * norm x"
   by (unfold is_continuous_def) force
 
 subsection{* The norm of a linear form *}
@@ -66,7 +66,7 @@
 constdefs
   B :: "[ 'a set, 'a => real, 'a::{plus, minus, zero} => real ] => real set"
   "B V norm f == 
-  {#0} \<union> {|f x| * rinv (norm x) | x. x \<noteq> 0 \<and> x \<in> V}"
+  {#0} \\<union> {|f x| * rinv (norm x) | x. x \\<noteq> 0 \\<and> x \\<in> V}"
 
 text{* $n$ is the function norm of $f$, iff 
 $n$ is the supremum of $B$. 
@@ -85,9 +85,9 @@
   "function_norm f V norm == Sup UNIV (B V norm f)"
 
 syntax   
-  function_norm :: " ['a => real, 'a set, 'a => real] => real" ("\<parallel>_\<parallel>_,_")
+  function_norm :: " ['a => real, 'a set, 'a => real] => real" ("\\<parallel>_\\<parallel>_,_")
 
-lemma B_not_empty: "#0 \<in> B V norm f"
+lemma B_not_empty: "#0 \\<in> B V norm f"
   by (unfold B_def, force)
 
 text {* The following lemma states that every continuous linear form
@@ -95,35 +95,35 @@
 
 lemma ex_fnorm [intro??]: 
   "[| is_normed_vectorspace V norm; is_continuous V norm f|]
-     ==> is_function_norm f V norm \<parallel>f\<parallel>V,norm" 
+     ==> is_function_norm f V norm \\<parallel>f\\<parallel>V,norm" 
 proof (unfold function_norm_def is_function_norm_def 
   is_continuous_def Sup_def, elim conjE, rule selectI2EX)
   assume "is_normed_vectorspace V norm"
   assume "is_linearform V f" 
-  and e: "\<exists>c. \<forall>x \<in> V. |f x| <= c * norm x"
+  and e: "\\<exists>c. \\<forall>x \\<in> V. |f x| <= c * norm x"
 
   txt {* The existence of the supremum is shown using the 
   completeness of the reals. Completeness means, that
   every non-empty bounded set of reals has a 
   supremum. *}
-  show  "\<exists>a. is_Sup UNIV (B V norm f) a" 
+  show  "\\<exists>a. is_Sup UNIV (B V norm f) a" 
   proof (unfold is_Sup_def, rule reals_complete)
 
     txt {* First we have to show that $B$ is non-empty: *} 
 
-    show "\<exists>X. X \<in> B V norm f" 
+    show "\\<exists>X. X \\<in> B V norm f" 
     proof (intro exI)
-      show "#0 \<in> (B V norm f)" by (unfold B_def, force)
+      show "#0 \\<in> (B V norm f)" by (unfold B_def, force)
     qed
 
     txt {* Then we have to show that $B$ is bounded: *}
 
-    from e show "\<exists>Y. isUb UNIV (B V norm f) Y"
+    from e show "\\<exists>Y. isUb UNIV (B V norm f) Y"
     proof
 
       txt {* We know that $f$ is bounded by some value $c$. *}  
   
-      fix c assume a: "\<forall>x \<in> V. |f x| <= c * norm x"
+      fix c assume a: "\\<forall>x \\<in> V. |f x| <= c * norm x"
       def b == "max c #0"
 
       show "?thesis"
@@ -133,7 +133,7 @@
         txt{* To proof the thesis, we have to show that there is 
         some constant $b$, such that $y \leq b$ for all $y\in B$. 
         Due to the definition of $B$ there are two cases for
-        $y\in B$. If $y = 0$ then $y \leq idt{max}\ap c\ap 0$: *}
+        $y\in B$. If $y = 0$ then $y \leq \idt{max}\ap c\ap 0$: *}
 
 	fix y assume "y = (#0::real)"
         show "y <= b" by (simp! add: le_max2)
@@ -144,7 +144,7 @@
 
       next
 	fix x y
-        assume "x \<in> V" "x \<noteq> 0" (***
+        assume "x \\<in> V" "x \\<noteq> 0" (***
 
          have ge: "#0 <= rinv (norm x)";
           by (rule real_less_imp_le, rule real_rinv_gt_zero, 
@@ -155,11 +155,11 @@
               show "#0 < norm x"; ..;
             qed;
           qed; *** )
-        have nz: "norm x \<noteq> #0" 
+        have nz: "norm x \\<noteq> #0" 
           by (rule not_sym, rule lt_imp_not_eq, 
               rule normed_vs_norm_gt_zero) (***
           proof (rule not_sym);
-            show "#0 \<noteq> norm x"; 
+            show "#0 \\<noteq> norm x"; 
             proof (rule lt_imp_not_eq);
               show "#0 < norm x"; ..;
             qed;
@@ -180,7 +180,7 @@
           by (rule real_mult_assoc)
         also have "(norm x * rinv (norm x)) = (#1::real)" 
         proof (rule real_mult_inv_right1)
-          show nz: "norm x \<noteq> #0" 
+          show nz: "norm x \\<noteq> #0" 
             by (rule not_sym, rule lt_imp_not_eq, 
               rule normed_vs_norm_gt_zero)
         qed
@@ -195,7 +195,7 @@
 
 lemma fnorm_ge_zero [intro??]: 
   "[| is_continuous V norm f; is_normed_vectorspace V norm |]
-   ==> #0 <= \<parallel>f\<parallel>V,norm"
+   ==> #0 <= \\<parallel>f\\<parallel>V,norm"
 proof -
   assume c: "is_continuous V norm f" 
      and n: "is_normed_vectorspace V norm"
@@ -206,11 +206,11 @@
 
   show ?thesis 
   proof (unfold function_norm_def, rule sup_ub1)
-    show "\<forall>x \<in> (B V norm f). #0 <= x" 
+    show "\\<forall>x \\<in> (B V norm f). #0 <= x" 
     proof (intro ballI, unfold B_def,
            elim UnE singletonE CollectE exE conjE) 
       fix x r
-      assume "x \<in> V" "x \<noteq> 0" 
+      assume "x \\<in> V" "x \\<noteq> 0" 
         and r: "r = |f x| * rinv (norm x)"
 
       have ge: "#0 <= |f x|" by (simp! only: abs_ge_zero)
@@ -228,13 +228,13 @@
 
     txt {* Since $f$ is continuous the function norm exists: *}
 
-    have "is_function_norm f V norm \<parallel>f\<parallel>V,norm" ..
+    have "is_function_norm f V norm \\<parallel>f\\<parallel>V,norm" ..
     thus "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))" 
       by (unfold is_function_norm_def function_norm_def)
 
     txt {* $B$ is non-empty by construction: *}
 
-    show "#0 \<in> B V norm f" by (rule B_not_empty)
+    show "#0 \\<in> B V norm f" by (rule B_not_empty)
   qed
 qed
   
@@ -245,10 +245,10 @@
 *}
 
 lemma norm_fx_le_norm_f_norm_x: 
-  "[| is_continuous V norm f; is_normed_vectorspace V norm; x \<in> V |] 
-    ==> |f x| <= \<parallel>f\<parallel>V,norm * norm x"
+  "[| is_continuous V norm f; is_normed_vectorspace V norm; x \\<in> V |] 
+    ==> |f x| <= \\<parallel>f\\<parallel>V,norm * norm x"
 proof - 
-  assume "is_normed_vectorspace V norm" "x \<in> V" 
+  assume "is_normed_vectorspace V norm" "x \\<in> V" 
   and c: "is_continuous V norm f"
   have v: "is_vectorspace V" ..
 
@@ -265,31 +265,29 @@
     have "|f x| = |f 0|" by (simp!)
     also from v continuous_linearform have "f 0 = #0" ..
     also note abs_zero
-    also have "#0 <= \<parallel>f\<parallel>V,norm * norm x"
+    also have "#0 <= \\<parallel>f\\<parallel>V,norm * norm x"
     proof (rule real_le_mult_order1a)
-      show "#0 <= \<parallel>f\<parallel>V,norm" ..
+      show "#0 <= \\<parallel>f\\<parallel>V,norm" ..
       show "#0 <= norm x" ..
     qed
     finally 
-    show "|f x| <= \<parallel>f\<parallel>V,norm * norm x" .
+    show "|f x| <= \\<parallel>f\\<parallel>V,norm * norm x" .
 
   next
-    assume "x \<noteq> 0"
-    have n: "#0 <= norm x" ..
-    have nz: "norm x \<noteq> #0"
-    proof (rule lt_imp_not_eq [RS not_sym])
-      show "#0 < norm x" ..
-    qed
+    assume "x \\<noteq> 0"
+    have n: "#0 < norm x" ..
+    hence nz: "norm x \\<noteq> #0" 
+      by (simp only: lt_imp_not_eq)
 
     txt {* For the case $x\neq \zero$ we derive the following
     fact from the definition of the function norm:*}
 
-    have l: "|f x| * rinv (norm x) <= \<parallel>f\<parallel>V,norm"
+    have l: "|f x| * rinv (norm x) <= \\<parallel>f\\<parallel>V,norm"
     proof (unfold function_norm_def, rule sup_ub)
       from ex_fnorm [OF _ c]
       show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"
          by (simp! add: is_function_norm_def function_norm_def)
-      show "|f x| * rinv (norm x) \<in> B V norm f" 
+      show "|f x| * rinv (norm x) \\<in> B V norm f" 
         by (unfold B_def, intro UnI2 CollectI exI [of _ x]
             conjI, simp)
     qed
@@ -298,14 +296,12 @@
 
     have "|f x| = |f x| * #1" by (simp!)
     also from nz have "#1 = rinv (norm x) * norm x" 
-      by (rule real_mult_inv_left1 [RS sym])
-    also 
-    have "|f x| * ... = |f x| * rinv (norm x) * norm x"
+      by (simp add: real_mult_inv_left1)
+    also have "|f x| * ... = |f x| * rinv (norm x) * norm x"
       by (simp! add: real_mult_assoc)
-    also have "... <= \<parallel>f\<parallel>V,norm * norm x"
-      by (rule real_mult_le_le_mono2 [OF n l])
-    finally 
-    show "|f x| <= \<parallel>f\<parallel>V,norm * norm x" .
+    also from n l have "... <= \\<parallel>f\\<parallel>V,norm * norm x"
+      by (simp add: real_mult_le_le_mono2)
+    finally show "|f x| <= \\<parallel>f\\<parallel>V,norm * norm x" .
   qed
 qed
 
@@ -318,13 +314,13 @@
 
 lemma fnorm_le_ub: 
   "[| is_continuous V norm f; is_normed_vectorspace V norm; 
-     \<forall>x \<in> V. |f x| <= c * norm x; #0 <= c |]
-  ==> \<parallel>f\<parallel>V,norm <= c"
+     \\<forall>x \\<in> V. |f x| <= c * norm x; #0 <= c |]
+  ==> \\<parallel>f\\<parallel>V,norm <= c"
 proof (unfold function_norm_def)
   assume "is_normed_vectorspace V norm" 
   assume c: "is_continuous V norm f"
-  assume fb: "\<forall>x \<in> V. |f x| <= c * norm x"
-         and "#0 <= c"
+  assume fb: "\\<forall>x \\<in> V. |f x| <= c * norm x"
+    and "#0 <= c"
 
   txt {* Suppose the inequation holds for some $c\geq 0$.
   If $c$ is an upper bound of $B$, then $c$ is greater 
@@ -343,7 +339,7 @@
 
     show "isUb UNIV (B V norm f) c"  
     proof (intro isUbI setleI ballI)
-      fix y assume "y \<in> B V norm f"
+      fix y assume "y \\<in> B V norm f"
       thus le: "y <= c"
       proof (unfold B_def, elim UnE CollectE exE conjE singletonE)
 
@@ -358,14 +354,14 @@
 
       next
 	fix x 
-        assume "x \<in> V" "x \<noteq> 0" 
+        assume "x \\<in> V" "x \\<noteq> 0" 
 
         have lz: "#0 < norm x" 
           by (simp! add: normed_vs_norm_gt_zero)
           
-        have nz: "norm x \<noteq> #0" 
+        have nz: "norm x \\<noteq> #0" 
         proof (rule not_sym)
-          from lz show "#0 \<noteq> norm x"
+          from lz show "#0 \\<noteq> norm x"
             by (simp! add: order_less_imp_not_eq)
         qed