src/HOL/Library/Code_Binary_Nat.thy
changeset 51113 222fb6cb2c3e
parent 50023 28f3263d4d1b
child 51143 0a2371e7ced3
--- a/src/HOL/Library/Code_Binary_Nat.thy	Thu Feb 14 12:24:42 2013 +0100
+++ b/src/HOL/Library/Code_Binary_Nat.thy	Thu Feb 14 12:24:56 2013 +0100
@@ -1,11 +1,11 @@
 (*  Title:      HOL/Library/Code_Binary_Nat.thy
-    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
+    Author:     Florian Haftmann, TU Muenchen
 *)
 
 header {* Implementation of natural numbers as binary numerals *}
 
 theory Code_Binary_Nat
-imports Main
+imports Code_Abstract_Nat
 begin
 
 text {*
@@ -146,104 +146,6 @@
   by (simp_all add: nat_of_num_numeral)
 
 
-subsection {* Case analysis *}
-
-text {*
-  Case analysis on natural numbers is rephrased using a conditional
-  expression:
-*}
-
-lemma [code, code_unfold]:
-  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
-  by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc)
-
-
-subsection {* Preprocessors *}
-
-text {*
-  The term @{term "Suc n"} is no longer a valid pattern.
-  Therefore, all occurrences of this term in a position
-  where a pattern is expected (i.e.~on the left-hand side of a recursion
-  equation) must be eliminated.
-  This can be accomplished by applying the following transformation rules:
-*}
-
-lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
-  f n \<equiv> if n = 0 then g else h (n - 1)"
-  by (rule eq_reflection) (cases n, simp_all)
-
-text {*
-  The rules above are built into a preprocessor that is plugged into
-  the code generator. Since the preprocessor for introduction rules
-  does not know anything about modes, some of the modes that worked
-  for the canonical representation of natural numbers may no longer work.
-*}
-
-(*<*)
-setup {*
-let
-
-fun remove_suc thy thms =
-  let
-    val vname = singleton (Name.variant_list (map fst
-      (fold (Term.add_var_names o Thm.full_prop_of) thms []))) "n";
-    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
-    fun lhs_of th = snd (Thm.dest_comb
-      (fst (Thm.dest_comb (cprop_of th))));
-    fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
-    fun find_vars ct = (case term_of ct of
-        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
-      | _ $ _ =>
-        let val (ct1, ct2) = Thm.dest_comb ct
-        in 
-          map (apfst (fn ct => Thm.apply ct ct2)) (find_vars ct1) @
-          map (apfst (Thm.apply ct1)) (find_vars ct2)
-        end
-      | _ => []);
-    val eqs = maps
-      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
-    fun mk_thms (th, (ct, cv')) =
-      let
-        val th' =
-          Thm.implies_elim
-           (Conv.fconv_rule (Thm.beta_conversion true)
-             (Drule.instantiate'
-               [SOME (ctyp_of_term ct)] [SOME (Thm.lambda cv ct),
-                 SOME (Thm.lambda cv' (rhs_of th)), NONE, SOME cv']
-               @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
-      in
-        case map_filter (fn th'' =>
-            SOME (th'', singleton
-              (Variable.trade (K (fn [th'''] => [th''' RS th']))
-                (Variable.global_thm_context th'')) th'')
-          handle THM _ => NONE) thms of
-            [] => NONE
-          | thps =>
-              let val (ths1, ths2) = split_list thps
-              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
-      end
-  in get_first mk_thms eqs end;
-
-fun eqn_suc_base_preproc thy thms =
-  let
-    val dest = fst o Logic.dest_equals o prop_of;
-    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
-  in
-    if forall (can dest) thms andalso exists (contains_suc o dest) thms
-      then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
-       else NONE
-  end;
-
-val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;
-
-in
-
-  Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
-
-end;
-*}
-(*>*)
-
 code_modulename SML
   Code_Binary_Nat Arith