src/HOL/Analysis/Interval_Integral.thy
changeset 68403 223172b97d0b
parent 68096 e58c9ac761cb
child 68532 f8b98d31ad45
--- a/src/HOL/Analysis/Interval_Integral.thy	Wed Jun 06 13:04:52 2018 +0200
+++ b/src/HOL/Analysis/Interval_Integral.thy	Wed Jun 06 18:19:55 2018 +0200
@@ -88,7 +88,7 @@
   from ereal_incseq_approx[OF this] guess X .
   then show thesis
     apply (intro that[of "\<lambda>i. - X i"])
-    apply (auto simp: decseq_def incseq_def reorient: uminus_ereal.simps)
+    apply (auto simp: decseq_def incseq_def simp flip: uminus_ereal.simps)
     apply (metis ereal_minus_less_minus ereal_uminus_uminus ereal_Lim_uminus)+
     done
 qed
@@ -121,7 +121,7 @@
     fix x i assume "l i \<le> x" "x \<le> u i"
     with \<open>a < ereal (l i)\<close> \<open>ereal (u i) < b\<close>
     show "a < ereal x" "ereal x < b"
-      by (auto reorient: ereal_less_eq(3))
+      by (auto simp flip: ereal_less_eq(3))
   qed
   show thesis
     by (intro that) fact+
@@ -283,7 +283,7 @@
     unfolding interval_lebesgue_integrable_def set_lebesgue_integral_def
     apply (rule Bochner_Integration.integral_cong [OF refl])
     by (auto simp: einterval_iff ereal_uminus_le_reorder ereal_uminus_less_reorder not_less
-             reorient: uminus_ereal.simps
+             simp flip: uminus_ereal.simps
              split: split_indicator)
   then show ?case
     unfolding interval_lebesgue_integral_def 
@@ -649,7 +649,7 @@
     fix i show "set_integrable lborel {l i .. u i} f"
       using \<open>a < l i\<close> \<open>u i < b\<close> unfolding set_integrable_def
       by (intro borel_integrable_compact f continuous_at_imp_continuous_on compact_Icc ballI)
-         (auto reorient: ereal_less_eq)
+         (auto simp flip: ereal_less_eq)
   qed
   have 2: "set_borel_measurable lborel (einterval a b) f"
     unfolding set_borel_measurable_def