--- a/src/HOL/Analysis/Infinite_Set_Sum.thy Mon Nov 15 17:26:31 2021 +0100
+++ b/src/HOL/Analysis/Infinite_Set_Sum.thy Mon Nov 15 18:04:07 2021 +0100
@@ -10,6 +10,11 @@
imports Set_Integral Infinite_Sum
begin
+(*
+ WARNING! This file is considered obsolete and will, in the long run, be replaced with
+ the more general "Infinite_Sum".
+*)
+
text \<open>Conflicting notation from \<^theory>\<open>HOL-Analysis.Infinite_Sum\<close>\<close>
no_notation Infinite_Sum.abs_summable_on (infixr "abs'_summable'_on" 46)
@@ -1239,10 +1244,20 @@
y = enn2ereal x}"
by (metis (mono_tags, lifting) Sup_upper empty_subsetI ennreal_0 finite.emptyI
mem_Collect_eq sum.empty zero_ennreal.rep_eq)
- moreover have "Sup {y. \<exists>x. (\<exists>y. finite y \<and> y \<subseteq> A \<and> x = ennreal (sum f y)) \<and>
- y = enn2ereal x} = Sup {y. \<exists>x. finite x \<and> x \<subseteq> A \<and> y = ereal (sum f x)}"
- using enn2ereal_ennreal fnn in_mono sum_nonneg Collect_cong
- by (smt (verit, ccfv_SIG))
+ moreover have "(\<exists>x. (\<exists>y. finite y \<and> y \<subseteq> A \<and> x = ennreal (sum f y)) \<and> y = enn2ereal x) =
+ (\<exists>x. finite x \<and> x \<subseteq> A \<and> y = ereal (sum f x))" for y
+ proof -
+ have "(\<exists>x. (\<exists>y. finite y \<and> y \<subseteq> A \<and> x = ennreal (sum f y)) \<and> y = enn2ereal x) \<longleftrightarrow>
+ (\<exists>X x. finite X \<and> X \<subseteq> A \<and> x = ennreal (sum f X) \<and> y = enn2ereal x)"
+ by blast
+ also have "\<dots> \<longleftrightarrow> (\<exists>X. finite X \<and> X \<subseteq> A \<and> y = ereal (sum f X))"
+ by (rule arg_cong[of _ _ Ex])
+ (auto simp: fun_eq_iff intro!: enn2ereal_ennreal sum_nonneg enn2ereal_ennreal[symmetric] fnn)
+ finally show ?thesis .
+ qed
+ hence "Sup {y. \<exists>x. (\<exists>y. finite y \<and> y \<subseteq> A \<and> x = ennreal (sum f y)) \<and> y = enn2ereal x} =
+ Sup {y. \<exists>x. finite x \<and> x \<subseteq> A \<and> y = ereal (sum f x)}"
+ by simp
ultimately show "max 0 (Sup {y. \<exists>x. (\<exists>xa. finite xa \<and> xa \<subseteq> A \<and> x
= ennreal (sum f xa)) \<and> y = enn2ereal x})
= Sup {y. \<exists>x. finite x \<and> x \<subseteq> A \<and> y = ereal (sum f x)}"
@@ -1275,7 +1290,7 @@
then have \<open>sum n F \<le> infsetsum n A\<close> if \<open>finite F\<close> and \<open>F\<subseteq>A\<close> for F
using that by (auto simp flip: infsetsum_finite simp: n_def[abs_def] intro!: infsetsum_mono_neutral)
then show \<open>n summable_on A\<close>
- apply (rule_tac pos_summable_on)
+ apply (rule_tac nonneg_bdd_above_summable_on)
by (auto simp add: n_def bdd_above_def)
qed