| changeset 44890 | 22f665a2e91c |
| parent 44848 | f4d0b060c7ca |
| child 45231 | d85a2fdc586c |
--- a/src/HOL/Nat.thy Sun Sep 11 22:56:05 2011 +0200 +++ b/src/HOL/Nat.thy Mon Sep 12 07:55:43 2011 +0200 @@ -320,7 +320,7 @@ lemma one_eq_mult_iff [simp,no_atp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)" apply (rule trans) - apply (rule_tac [2] mult_eq_1_iff, fastsimp) + apply (rule_tac [2] mult_eq_1_iff, fastforce) done lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1"