--- a/src/HOL/Library/Fset.thy Tue Nov 23 23:10:13 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,347 +0,0 @@
-
-(* Author: Florian Haftmann, TU Muenchen *)
-
-header {* A set type which is executable on its finite part *}
-
-theory Fset
-imports More_Set More_List
-begin
-
-subsection {* Lifting *}
-
-typedef (open) 'a fset = "UNIV :: 'a set set"
- morphisms member Fset by rule+
-
-lemma member_Fset [simp]:
- "member (Fset A) = A"
- by (rule Fset_inverse) rule
-
-lemma Fset_member [simp]:
- "Fset (member A) = A"
- by (fact member_inverse)
-
-lemma Fset_inject [simp]:
- "Fset A = Fset B \<longleftrightarrow> A = B"
- by (simp add: Fset_inject)
-
-lemma fset_eq_iff:
- "A = B \<longleftrightarrow> member A = member B"
- by (simp add: member_inject)
-
-lemma fset_eqI:
- "member A = member B \<Longrightarrow> A = B"
- by (simp add: fset_eq_iff)
-
-declare mem_def [simp]
-
-definition Set :: "'a list \<Rightarrow> 'a fset" where
- "Set xs = Fset (set xs)"
-
-lemma member_Set [simp]:
- "member (Set xs) = set xs"
- by (simp add: Set_def)
-
-definition Coset :: "'a list \<Rightarrow> 'a fset" where
- "Coset xs = Fset (- set xs)"
-
-lemma member_Coset [simp]:
- "member (Coset xs) = - set xs"
- by (simp add: Coset_def)
-
-code_datatype Set Coset
-
-lemma member_code [code]:
- "member (Set xs) = List.member xs"
- "member (Coset xs) = Not \<circ> List.member xs"
- by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
-
-lemma member_image_UNIV [simp]:
- "member ` UNIV = UNIV"
-proof -
- have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a fset. A = member B"
- proof
- fix A :: "'a set"
- show "A = member (Fset A)" by simp
- qed
- then show ?thesis by (simp add: image_def)
-qed
-
-definition (in term_syntax)
- setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
- \<Rightarrow> 'a fset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
- [code_unfold]: "setify xs = Code_Evaluation.valtermify Set {\<cdot>} xs"
-
-notation fcomp (infixl "\<circ>>" 60)
-notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-instantiation fset :: (random) random
-begin
-
-definition
- "Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (setify xs))"
-
-instance ..
-
-end
-
-no_notation fcomp (infixl "\<circ>>" 60)
-no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-
-subsection {* Lattice instantiation *}
-
-instantiation fset :: (type) boolean_algebra
-begin
-
-definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
- [simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
-
-definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
- [simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
-
-definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "inf A B = Fset (member A \<inter> member B)"
-
-definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "sup A B = Fset (member A \<union> member B)"
-
-definition bot_fset :: "'a fset" where
- [simp]: "bot = Fset {}"
-
-definition top_fset :: "'a fset" where
- [simp]: "top = Fset UNIV"
-
-definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" where
- [simp]: "- A = Fset (- (member A))"
-
-definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "A - B = Fset (member A - member B)"
-
-instance proof
-qed (auto intro: fset_eqI)
-
-end
-
-instantiation fset :: (type) complete_lattice
-begin
-
-definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" where
- [simp]: "Inf_fset As = Fset (Inf (image member As))"
-
-definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" where
- [simp]: "Sup_fset As = Fset (Sup (image member As))"
-
-instance proof
-qed (auto simp add: le_fun_def le_bool_def)
-
-end
-
-
-subsection {* Basic operations *}
-
-definition is_empty :: "'a fset \<Rightarrow> bool" where
- [simp]: "is_empty A \<longleftrightarrow> More_Set.is_empty (member A)"
-
-lemma is_empty_Set [code]:
- "is_empty (Set xs) \<longleftrightarrow> List.null xs"
- by (simp add: is_empty_set)
-
-lemma empty_Set [code]:
- "bot = Set []"
- by (simp add: Set_def)
-
-lemma UNIV_Set [code]:
- "top = Coset []"
- by (simp add: Coset_def)
-
-definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "insert x A = Fset (Set.insert x (member A))"
-
-lemma insert_Set [code]:
- "insert x (Set xs) = Set (List.insert x xs)"
- "insert x (Coset xs) = Coset (removeAll x xs)"
- by (simp_all add: Set_def Coset_def)
-
-definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "remove x A = Fset (More_Set.remove x (member A))"
-
-lemma remove_Set [code]:
- "remove x (Set xs) = Set (removeAll x xs)"
- "remove x (Coset xs) = Coset (List.insert x xs)"
- by (simp_all add: Set_def Coset_def remove_set_compl)
- (simp add: More_Set.remove_def)
-
-definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
- [simp]: "map f A = Fset (image f (member A))"
-
-lemma map_Set [code]:
- "map f (Set xs) = Set (remdups (List.map f xs))"
- by (simp add: Set_def)
-
-type_mapper map
- by (simp_all add: image_image)
-
-definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- [simp]: "filter P A = Fset (More_Set.project P (member A))"
-
-lemma filter_Set [code]:
- "filter P (Set xs) = Set (List.filter P xs)"
- by (simp add: Set_def project_set)
-
-definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
- [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
-
-lemma forall_Set [code]:
- "forall P (Set xs) \<longleftrightarrow> list_all P xs"
- by (simp add: Set_def list_all_iff)
-
-definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
- [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
-
-lemma exists_Set [code]:
- "exists P (Set xs) \<longleftrightarrow> list_ex P xs"
- by (simp add: Set_def list_ex_iff)
-
-definition card :: "'a fset \<Rightarrow> nat" where
- [simp]: "card A = Finite_Set.card (member A)"
-
-lemma card_Set [code]:
- "card (Set xs) = length (remdups xs)"
-proof -
- have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
- by (rule distinct_card) simp
- then show ?thesis by (simp add: Set_def)
-qed
-
-lemma compl_Set [simp, code]:
- "- Set xs = Coset xs"
- by (simp add: Set_def Coset_def)
-
-lemma compl_Coset [simp, code]:
- "- Coset xs = Set xs"
- by (simp add: Set_def Coset_def)
-
-
-subsection {* Derived operations *}
-
-lemma subfset_eq_forall [code]:
- "A \<le> B \<longleftrightarrow> forall (member B) A"
- by (simp add: subset_eq)
-
-lemma subfset_subfset_eq [code]:
- "A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a fset)"
- by (fact less_le_not_le)
-
-instantiation fset :: (type) equal
-begin
-
-definition [code]:
- "HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a fset)"
-
-instance proof
-qed (simp add: equal_fset_def set_eq [symmetric] fset_eq_iff)
-
-end
-
-lemma [code nbe]:
- "HOL.equal (A :: 'a fset) A \<longleftrightarrow> True"
- by (fact equal_refl)
-
-
-subsection {* Functorial operations *}
-
-lemma inter_project [code]:
- "inf A (Set xs) = Set (List.filter (member A) xs)"
- "inf A (Coset xs) = foldr remove xs A"
-proof -
- show "inf A (Set xs) = Set (List.filter (member A) xs)"
- by (simp add: inter project_def Set_def)
- have *: "\<And>x::'a. remove = (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member)"
- by (simp add: fun_eq_iff)
- have "member \<circ> fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs =
- fold More_Set.remove xs \<circ> member"
- by (rule fold_commute) (simp add: fun_eq_iff)
- then have "fold More_Set.remove xs (member A) =
- member (fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs A)"
- by (simp add: fun_eq_iff)
- then have "inf A (Coset xs) = fold remove xs A"
- by (simp add: Diff_eq [symmetric] minus_set *)
- moreover have "\<And>x y :: 'a. Fset.remove y \<circ> Fset.remove x = Fset.remove x \<circ> Fset.remove y"
- by (auto simp add: More_Set.remove_def * intro: ext)
- ultimately show "inf A (Coset xs) = foldr remove xs A"
- by (simp add: foldr_fold)
-qed
-
-lemma subtract_remove [code]:
- "A - Set xs = foldr remove xs A"
- "A - Coset xs = Set (List.filter (member A) xs)"
- by (simp_all only: diff_eq compl_Set compl_Coset inter_project)
-
-lemma union_insert [code]:
- "sup (Set xs) A = foldr insert xs A"
- "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
-proof -
- have *: "\<And>x::'a. insert = (\<lambda>x. Fset \<circ> Set.insert x \<circ> member)"
- by (simp add: fun_eq_iff)
- have "member \<circ> fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs =
- fold Set.insert xs \<circ> member"
- by (rule fold_commute) (simp add: fun_eq_iff)
- then have "fold Set.insert xs (member A) =
- member (fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs A)"
- by (simp add: fun_eq_iff)
- then have "sup (Set xs) A = fold insert xs A"
- by (simp add: union_set *)
- moreover have "\<And>x y :: 'a. Fset.insert y \<circ> Fset.insert x = Fset.insert x \<circ> Fset.insert y"
- by (auto simp add: * intro: ext)
- ultimately show "sup (Set xs) A = foldr insert xs A"
- by (simp add: foldr_fold)
- show "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
- by (auto simp add: Coset_def)
-qed
-
-context complete_lattice
-begin
-
-definition Infimum :: "'a fset \<Rightarrow> 'a" where
- [simp]: "Infimum A = Inf (member A)"
-
-lemma Infimum_inf [code]:
- "Infimum (Set As) = foldr inf As top"
- "Infimum (Coset []) = bot"
- by (simp_all add: Inf_set_foldr Inf_UNIV)
-
-definition Supremum :: "'a fset \<Rightarrow> 'a" where
- [simp]: "Supremum A = Sup (member A)"
-
-lemma Supremum_sup [code]:
- "Supremum (Set As) = foldr sup As bot"
- "Supremum (Coset []) = top"
- by (simp_all add: Sup_set_foldr Sup_UNIV)
-
-end
-
-
-subsection {* Simplified simprules *}
-
-lemma is_empty_simp [simp]:
- "is_empty A \<longleftrightarrow> member A = {}"
- by (simp add: More_Set.is_empty_def)
-declare is_empty_def [simp del]
-
-lemma remove_simp [simp]:
- "remove x A = Fset (member A - {x})"
- by (simp add: More_Set.remove_def)
-declare remove_def [simp del]
-
-lemma filter_simp [simp]:
- "filter P A = Fset {x \<in> member A. P x}"
- by (simp add: More_Set.project_def)
-declare filter_def [simp del]
-
-declare mem_def [simp del]
-
-
-hide_const (open) setify is_empty insert remove map filter forall exists card
- Inter Union
-
-end