src/HOL/ex/NatSum.thy
changeset 11024 23bf8d787b04
parent 8944 96964d43a472
child 11377 0f16ad464c62
--- a/src/HOL/ex/NatSum.thy	Thu Feb 01 20:48:58 2001 +0100
+++ b/src/HOL/ex/NatSum.thy	Thu Feb 01 20:51:13 2001 +0100
@@ -1,1 +1,132 @@
-NatSum = Main
+(*  Title:      HOL/ex/NatSum.ML
+    ID:         $Id$
+    Author:     Tobias Nipkow
+    Copyright   1994 TU Muenchen
+
+Summing natural numbers, squares, cubes, etc.
+
+Originally demonstrated permutative rewriting, but add_ac is no longer
+needed thanks to new simprocs.
+
+Thanks to Sloane's On-Line Encyclopedia of Integer Sequences,
+http://www.research.att.com/~njas/sequences/
+*)
+
+header {* Summing natural numbers *}
+
+theory NatSum = Main:
+
+declare lessThan_Suc [simp] atMost_Suc [simp]
+declare add_mult_distrib [simp] add_mult_distrib2 [simp]
+declare diff_mult_distrib [simp] diff_mult_distrib2 [simp]
+
+text {*
+  \medskip The sum of the first @{term n} odd numbers equals @{term n}
+  squared.
+*}
+
+lemma sum_of_odds: "setsum (\<lambda>i. Suc (i + i)) (lessThan n) = n * n"
+  apply (induct n)
+   apply auto
+  done
+
+
+text {*
+  \medskip The sum of the first @{text n} odd squares.
+*}
+
+lemma sum_of_odd_squares:
+  "#3 * setsum (\<lambda>i. Suc (i + i) * Suc (i + i)) (lessThan n) = n * (#4 * n * n - #1)"
+  apply (induct n)
+  txt {* This removes the @{term "-#1"} from the inductive step *}
+   apply (case_tac [2] n)
+    apply auto
+  done
+
+
+text {*
+  \medskip The sum of the first @{term n} odd cubes
+*}
+
+lemma sum_of_odd_cubes:
+  "setsum (\<lambda>i. Suc (i + i) * Suc (i + i) * Suc (i + i)) (lessThan n) =
+    n * n * (#2 * n * n - #1)"
+  apply (induct "n")
+  txt {* This removes the @{term "-#1"} from the inductive step *}
+   apply (case_tac [2] "n")
+    apply auto
+  done
+
+text {*
+  \medskip The sum of the first @{term n} positive integers equals
+  @{text "n (n + 1) / 2"}.*}
+
+lemma sum_of_naturals: "#2 * setsum id (atMost n) = n * Suc n"
+  apply (induct n)
+   apply auto
+  done
+
+lemma sum_of_squares: "#6 * setsum (\<lambda>i. i * i) (atMost n) = n * Suc n * Suc (#2 * n)"
+  apply (induct n)
+   apply auto
+  done
+
+lemma sum_of_cubes: "#4 * setsum (\<lambda>i. i * i * i) (atMost n) = n * n * Suc n * Suc n"
+  apply (induct n)
+   apply auto
+  done
+
+
+text {*
+  \medskip Sum of fourth powers: two versions.
+*}
+
+lemma sum_of_fourth_powers:
+  "#30 * setsum (\<lambda>i. i * i * i * i) (atMost n) =
+    n * Suc n * Suc (#2 * n) * (#3 * n * n + #3 * n - #1)"
+  apply (induct n)
+   apply auto
+  txt {* Eliminates the subtraction *}
+  apply (case_tac n)
+   apply simp_all
+  done
+
+text {*
+  Alternative proof, with a change of variables and much more
+  subtraction, performed using the integers. *}
+
+declare
+  zmult_int [symmetric, simp]
+  zadd_zmult_distrib [simp]
+  zadd_zmult_distrib2 [simp]
+  zdiff_zmult_distrib [simp]
+  zdiff_zmult_distrib2 [simp]
+
+lemma int_sum_of_fourth_powers:
+  "#30 * int (setsum (\<lambda>i. i * i * i * i) (lessThan m)) =
+    int m * (int m - #1) * (int (#2 * m) - #1) *
+    (int (#3 * m * m) - int (#3 * m) - #1)"
+  apply (induct m)
+   apply simp_all
+  done
+
+
+text {*
+  \medskip Sums of geometric series: 2, 3 and the general case *}
+
+lemma sum_of_2_powers: "setsum (\<lambda>i. #2^i) (lessThan n) = #2^n - 1"
+  apply (induct n)
+   apply auto
+  done
+
+lemma sum_of_3_powers: "#2 * setsum (\<lambda>i. #3^i) (lessThan n) = #3^n - 1"
+  apply (induct n)
+   apply auto
+  done
+
+lemma sum_of_powers: "0 < k ==> (k - 1) * setsum (\<lambda>i. k^i) (lessThan n) = k^n - 1"
+  apply (induct n)
+   apply auto
+  done
+
+end