--- a/src/ZF/Bin.thy Thu Jul 23 14:20:51 2015 +0200
+++ b/src/ZF/Bin.thy Thu Jul 23 14:25:05 2015 +0200
@@ -13,7 +13,7 @@
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
*)
-section{*Arithmetic on Binary Integers*}
+section\<open>Arithmetic on Binary Integers\<close>
theory Bin
imports Int_ZF Datatype_ZF
@@ -176,8 +176,8 @@
by (induct_tac "v", auto)
-subsubsection{*The Carry and Borrow Functions,
- @{term bin_succ} and @{term bin_pred}*}
+subsubsection\<open>The Carry and Borrow Functions,
+ @{term bin_succ} and @{term bin_pred}\<close>
(*NCons preserves the integer value of its argument*)
lemma integ_of_NCons [simp]:
@@ -199,7 +199,7 @@
done
-subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*}
+subsubsection\<open>@{term bin_minus}: Unary Negation of Binary Integers\<close>
lemma integ_of_minus: "w \<in> bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"
apply (erule bin.induct)
@@ -207,7 +207,7 @@
done
-subsubsection{*@{term bin_add}: Binary Addition*}
+subsubsection\<open>@{term bin_add}: Binary Addition\<close>
lemma bin_add_Pls [simp]: "w \<in> bin ==> bin_add(Pls,w) = w"
by (unfold bin_add_def, simp)
@@ -255,7 +255,7 @@
done
-subsubsection{*@{term bin_mult}: Binary Multiplication*}
+subsubsection\<open>@{term bin_mult}: Binary Multiplication\<close>
lemma integ_of_mult:
"[| v \<in> bin; w \<in> bin |]
@@ -266,7 +266,7 @@
done
-subsection{*Computations*}
+subsection\<open>Computations\<close>
(** extra rules for bin_succ, bin_pred **)
@@ -351,8 +351,8 @@
done
-subsection{*Simplification Rules for Comparison of Binary Numbers*}
-text{*Thanks to Norbert Voelker*}
+subsection\<open>Simplification Rules for Comparison of Binary Numbers\<close>
+text\<open>Thanks to Norbert Voelker\<close>
(** Equals (=) **)
@@ -695,9 +695,9 @@
ML_file "int_arith.ML"
-subsection {* examples: *}
+subsection \<open>examples:\<close>
-text {* @{text combine_numerals_prod} (products of separate literals) *}
+text \<open>@{text combine_numerals_prod} (products of separate literals)\<close>
lemma "#5 $* x $* #3 = y" apply simp oops
schematic_lemma "y2 $+ ?x42 = y $+ y2" apply simp oops
@@ -741,7 +741,7 @@
lemma "a $+ $-(b$+c) $+ b = d" apply simp oops
lemma "a $+ $-(b$+c) $- b = d" apply simp oops
-text {* negative numerals *}
+text \<open>negative numerals\<close>
lemma "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz" apply simp oops
lemma "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y" apply simp oops
lemma "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y" apply simp oops
@@ -749,7 +749,7 @@
lemma "(i $+ j $+ #12 $+ k) $- #-15 = y" apply simp oops
lemma "(i $+ j $+ #-12 $+ k) $- #-15 = y" apply simp oops
-text {* Multiplying separated numerals *}
+text \<open>Multiplying separated numerals\<close>
lemma "#6 $* ($# x $* #2) = uu" apply simp oops
lemma "#4 $* ($# x $* $# x) $* (#2 $* $# x) = uu" apply simp oops