src/ZF/AC/WO1_AC.thy
changeset 12776 249600a63ba9
parent 1196 d43c1f7a53fe
child 16417 9bc16273c2d4
--- a/src/ZF/AC/WO1_AC.thy	Wed Jan 16 15:04:37 2002 +0100
+++ b/src/ZF/AC/WO1_AC.thy	Wed Jan 16 17:52:06 2002 +0100
@@ -1,3 +1,105 @@
-(*Dummy theory to document dependencies *)
+(*  Title:      ZF/AC/WO1_AC.thy
+    ID:         $Id$
+    Author:     Krzysztof Grabczewski
+
+The proofs of WO1 ==> AC1 and WO1 ==> AC10(n) for n >= 1
+
+The latter proof is referred to as clear by the Rubins.
+However it seems to be quite complicated.
+The formal proof presented below is a mechanisation of the proof 
+by Lawrence C. Paulson which is the following:
+
+Assume WO1.  Let s be a set of infinite sets.
+ 
+Suppose x \<in> s.  Then x is equipollent to |x| (by WO1), an infinite cardinal
+call it K.  Since K = K |+| K = |K+K| (by InfCard_cdouble_eq) there is an 
+isomorphism h \<in> bij(K+K, x).  (Here + means disjoint sum.)
+ 
+So there is a partition of x into 2-element sets, namely
+ 
+        {{h(Inl(i)), h(Inr(i))} . i \<in> K}
+ 
+So for all x \<in> s the desired partition exists.  By AC1 (which follows from WO1) 
+there exists a function f that chooses a partition for each x \<in> s.  Therefore we 
+have AC10(2).
+
+*)
+
+theory WO1_AC = AC_Equiv:
+
+(* ********************************************************************** *)
+(* WO1 ==> AC1                                                            *)
+(* ********************************************************************** *)
+
+theorem WO1_AC1: "WO1 ==> AC1"
+by (unfold AC1_def WO1_def, fast elim!: ex_choice_fun)
+
+(* ********************************************************************** *)
+(* WO1 ==> AC10(n) (n >= 1)                                               *)
+(* ********************************************************************** *)
+
+lemma lemma1: "[| WO1; \<forall>B \<in> A. \<exists>C \<in> D(B). P(C,B) |] ==> \<exists>f. \<forall>B \<in> A. P(f`B,B)"
+apply (unfold WO1_def)
+apply (erule_tac x = "Union ({{C \<in> D (B) . P (C,B) }. B \<in> A}) " in allE)
+apply (erule exE, drule ex_choice_fun, fast)
+apply (erule exE)
+apply (rule_tac x = "\<lambda>x \<in> A. f`{C \<in> D (x) . P (C,x) }" in exI)
+apply (simp, blast dest!: apply_type [OF _ RepFunI])
+done
 
-WO1_AC = AC_Equiv + WO_AC
+lemma lemma2_1: "[| ~Finite(B); WO1 |] ==> |B| + |B| \<approx>  B"
+apply (unfold WO1_def)
+apply (rule eqpoll_trans)
+prefer 2 apply (fast elim!: well_ord_cardinal_eqpoll)
+apply (rule eqpoll_sym [THEN eqpoll_trans])
+apply (fast elim!: well_ord_cardinal_eqpoll)
+apply (drule spec [of _ B]) 
+apply (clarify dest!: eqpoll_imp_Finite_iff [OF well_ord_cardinal_eqpoll]) 
+apply (simp add: cadd_def [symmetric] 
+            eqpoll_refl InfCard_cdouble_eq Card_cardinal Inf_Card_is_InfCard) 
+done
+
+lemma lemma2_2:
+     "f \<in> bij(D+D, B) ==> {{f`Inl(i), f`Inr(i)}. i \<in> D} \<in> Pow(Pow(B))"
+by (fast elim!: bij_is_fun [THEN apply_type])
+
+
+lemma lemma2_3: 
+        "f \<in> bij(D+D, B) ==> pairwise_disjoint({{f`Inl(i), f`Inr(i)}. i \<in> D})"
+apply (unfold pairwise_disjoint_def)
+apply (blast dest: bij_is_inj [THEN inj_apply_equality])
+done
+
+lemma lemma2_4:
+     "[| f \<in> bij(D+D, B); 1\<le>n |] 
+      ==> sets_of_size_between({{f`Inl(i), f`Inr(i)}. i \<in> D}, 2, succ(n))"
+apply (simp (no_asm_simp) add: sets_of_size_between_def succ_def)
+apply (blast intro!: cons_lepoll_cong 
+            intro: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll]  
+                   le_imp_subset [THEN subset_imp_lepoll]  lepoll_trans 
+            dest: bij_is_inj [THEN inj_apply_equality] elim!: mem_irrefl)
+done
+
+lemma lemma2_5: 
+     "f \<in> bij(D+D, B) ==> Union({{f`Inl(i), f`Inr(i)}. i \<in> D})=B"
+apply (unfold bij_def surj_def)
+apply (fast elim!: inj_is_fun [THEN apply_type])
+done
+
+lemma lemma2:
+     "[| WO1; ~Finite(B); 1\<le>n  |]   
+      ==> \<exists>C \<in> Pow(Pow(B)). pairwise_disjoint(C) &   
+                sets_of_size_between(C, 2, succ(n)) &   
+                Union(C)=B"
+apply (drule lemma2_1 [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]], 
+       assumption)
+apply (blast intro!: lemma2_2 lemma2_3 lemma2_4 lemma2_5)
+done
+
+theorem WO1_AC10: "[| WO1; 1\<le>n |] ==> AC10(n)"
+apply (unfold AC10_def)
+apply (fast intro!: lemma1 elim!: lemma2)
+done
+
+end
+