--- a/src/CTT/ex/Synthesis.thy Wed Oct 26 17:22:12 2022 +0100
+++ b/src/CTT/ex/Synthesis.thy Wed Oct 26 18:08:44 2022 +0100
@@ -6,40 +6,40 @@
section "Synthesis examples, using a crude form of narrowing"
theory Synthesis
-imports "../CTT"
+ imports "../CTT"
begin
text "discovery of predecessor function"
schematic_goal "?a : \<Sum>pred:?A . Eq(N, pred`0, 0) \<times> (\<Prod>n:N. Eq(N, pred ` succ(n), n))"
-apply intr
-apply eqintr
-apply (rule_tac [3] reduction_rls)
-apply (rule_tac [5] comp_rls)
-apply rew
-done
+ apply intr
+ apply eqintr
+ apply (rule_tac [3] reduction_rls)
+ apply (rule_tac [5] comp_rls)
+ apply rew
+ done
text "the function fst as an element of a function type"
schematic_goal [folded basic_defs]:
"A type \<Longrightarrow> ?a: \<Sum>f:?B . \<Prod>i:A. \<Prod>j:A. Eq(A, f ` <i,j>, i)"
-apply intr
-apply eqintr
-apply (rule_tac [2] reduction_rls)
-apply (rule_tac [4] comp_rls)
-apply typechk
-txt "now put in A everywhere"
-apply assumption+
-done
+ apply intr
+ apply eqintr
+ apply (rule_tac [2] reduction_rls)
+ apply (rule_tac [4] comp_rls)
+ apply typechk
+ txt "now put in A everywhere"
+ apply assumption+
+ done
text "An interesting use of the eliminator, when"
-(*The early implementation of unification caused non-rigid path in occur check
+ (*The early implementation of unification caused non-rigid path in occur check
See following example.*)
schematic_goal "?a : \<Prod>i:N. Eq(?A, ?b(inl(i)), <0 , i>)
\<times> Eq(?A, ?b(inr(i)), <succ(0), i>)"
-apply intr
-apply eqintr
-apply (rule comp_rls)
-apply rew
-done
+ apply intr
+ apply eqintr
+ apply (rule comp_rls)
+ apply rew
+ done
(*Here we allow the type to depend on i.
This prevents the cycle in the first unification (no longer needed).
@@ -47,58 +47,58 @@
Simpler still: make ?A into a constant type N \<times> N.*)
schematic_goal "?a : \<Prod>i:N. Eq(?A(i), ?b(inl(i)), <0 , i>)
\<times> Eq(?A(i), ?b(inr(i)), <succ(0),i>)"
-oops
+ oops
-text "A tricky combination of when and split"
-(*Now handled easily, but caused great problems once*)
+ text "A tricky combination of when and split"
+ (*Now handled easily, but caused great problems once*)
schematic_goal [folded basic_defs]:
"?a : \<Prod>i:N. \<Prod>j:N. Eq(?A, ?b(inl(<i,j>)), i)
\<times> Eq(?A, ?b(inr(<i,j>)), j)"
-apply intr
-apply eqintr
-apply (rule PlusC_inl [THEN trans_elem])
-apply (rule_tac [4] comp_rls)
-apply (rule_tac [7] reduction_rls)
-apply (rule_tac [10] comp_rls)
-apply typechk
-done
+ apply intr
+ apply eqintr
+ apply (rule PlusC_inl [THEN trans_elem])
+ apply (rule_tac [4] comp_rls)
+ apply (rule_tac [7] reduction_rls)
+ apply (rule_tac [10] comp_rls)
+ apply typechk
+ done
(*similar but allows the type to depend on i and j*)
schematic_goal "?a : \<Prod>i:N. \<Prod>j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
\<times> Eq(?A(i,j), ?b(inr(<i,j>)), j)"
-oops
+ oops
(*similar but specifying the type N simplifies the unification problems*)
schematic_goal "?a : \<Prod>i:N. \<Prod>j:N. Eq(N, ?b(inl(<i,j>)), i)
\<times> Eq(N, ?b(inr(<i,j>)), j)"
-oops
+ oops
-text "Deriving the addition operator"
+ text "Deriving the addition operator"
schematic_goal [folded arith_defs]:
"?c : \<Prod>n:N. Eq(N, ?f(0,n), n)
\<times> (\<Prod>m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))"
-apply intr
-apply eqintr
-apply (rule comp_rls)
-apply rew
-done
+ apply intr
+ apply eqintr
+ apply (rule comp_rls)
+ apply rew
+ done
text "The addition function -- using explicit lambdas"
schematic_goal [folded arith_defs]:
"?c : \<Sum>plus : ?A .
\<Prod>x:N. Eq(N, plus`0`x, x)
\<times> (\<Prod>y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))"
-apply intr
-apply eqintr
-apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
-apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
-apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
-apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
-apply (rule_tac [3] p = "y" in NC_succ)
- (** by (resolve_tac @{context} comp_rls 3); caused excessive branching **)
-apply rew
-done
+ apply intr
+ apply eqintr
+ apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
+ apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
+ apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
+ apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
+ apply (rule_tac [3] p = "y" in NC_succ)
+ (** by (resolve_tac @{context} comp_rls 3); caused excessive branching **)
+ apply rew
+ done
end