src/CTT/ex/Synthesis.thy
changeset 76377 2510e6f7b11c
parent 69593 3dda49e08b9d
child 76539 8c94ca4dd035
--- a/src/CTT/ex/Synthesis.thy	Wed Oct 26 17:22:12 2022 +0100
+++ b/src/CTT/ex/Synthesis.thy	Wed Oct 26 18:08:44 2022 +0100
@@ -6,40 +6,40 @@
 section "Synthesis examples, using a crude form of narrowing"
 
 theory Synthesis
-imports "../CTT"
+  imports "../CTT"
 begin
 
 text "discovery of predecessor function"
 schematic_goal "?a : \<Sum>pred:?A . Eq(N, pred`0, 0) \<times> (\<Prod>n:N. Eq(N, pred ` succ(n), n))"
-apply intr
-apply eqintr
-apply (rule_tac [3] reduction_rls)
-apply (rule_tac [5] comp_rls)
-apply rew
-done
+  apply intr
+    apply eqintr
+    apply (rule_tac [3] reduction_rls)
+      apply (rule_tac [5] comp_rls)
+        apply rew
+  done
 
 text "the function fst as an element of a function type"
 schematic_goal [folded basic_defs]:
   "A type \<Longrightarrow> ?a: \<Sum>f:?B . \<Prod>i:A. \<Prod>j:A. Eq(A, f ` <i,j>, i)"
-apply intr
-apply eqintr
-apply (rule_tac [2] reduction_rls)
-apply (rule_tac [4] comp_rls)
-apply typechk
-txt "now put in A everywhere"
-apply assumption+
-done
+  apply intr
+   apply eqintr
+   apply (rule_tac [2] reduction_rls)
+     apply (rule_tac [4] comp_rls)
+       apply typechk
+  txt "now put in A everywhere"
+   apply assumption+
+  done
 
 text "An interesting use of the eliminator, when"
-(*The early implementation of unification caused non-rigid path in occur check
+  (*The early implementation of unification caused non-rigid path in occur check
   See following example.*)
 schematic_goal "?a : \<Prod>i:N. Eq(?A, ?b(inl(i)), <0    ,   i>)
                    \<times> Eq(?A, ?b(inr(i)), <succ(0), i>)"
-apply intr
-apply eqintr
-apply (rule comp_rls)
-apply rew
-done
+  apply intr
+   apply eqintr
+   apply (rule comp_rls)
+     apply rew
+  done
 
 (*Here we allow the type to depend on i.
  This prevents the cycle in the first unification (no longer needed).
@@ -47,58 +47,58 @@
  Simpler still: make ?A into a constant type N \<times> N.*)
 schematic_goal "?a : \<Prod>i:N. Eq(?A(i), ?b(inl(i)), <0   ,   i>)
                   \<times>  Eq(?A(i), ?b(inr(i)), <succ(0),i>)"
-oops
+  oops
 
-text "A tricky combination of when and split"
-(*Now handled easily, but caused great problems once*)
+  text "A tricky combination of when and split"
+    (*Now handled easily, but caused great problems once*)
 schematic_goal [folded basic_defs]:
   "?a : \<Prod>i:N. \<Prod>j:N. Eq(?A, ?b(inl(<i,j>)), i)
                            \<times>  Eq(?A, ?b(inr(<i,j>)), j)"
-apply intr
-apply eqintr
-apply (rule PlusC_inl [THEN trans_elem])
-apply (rule_tac [4] comp_rls)
-apply (rule_tac [7] reduction_rls)
-apply (rule_tac [10] comp_rls)
-apply typechk
-done
+  apply intr
+   apply eqintr
+   apply (rule PlusC_inl [THEN trans_elem])
+      apply (rule_tac [4] comp_rls)
+        apply (rule_tac [7] reduction_rls)
+           apply (rule_tac [10] comp_rls)
+             apply typechk
+  done
 
 (*similar but allows the type to depend on i and j*)
 schematic_goal "?a : \<Prod>i:N. \<Prod>j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
                           \<times>   Eq(?A(i,j), ?b(inr(<i,j>)), j)"
-oops
+  oops
 
 (*similar but specifying the type N simplifies the unification problems*)
 schematic_goal "?a : \<Prod>i:N. \<Prod>j:N. Eq(N, ?b(inl(<i,j>)), i)
                           \<times>   Eq(N, ?b(inr(<i,j>)), j)"
-oops
+  oops
 
 
-text "Deriving the addition operator"
+  text "Deriving the addition operator"
 schematic_goal [folded arith_defs]:
   "?c : \<Prod>n:N. Eq(N, ?f(0,n), n)
                   \<times>  (\<Prod>m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))"
-apply intr
-apply eqintr
-apply (rule comp_rls)
-apply rew
-done
+  apply intr
+   apply eqintr
+   apply (rule comp_rls)
+    apply rew
+  done
 
 text "The addition function -- using explicit lambdas"
 schematic_goal [folded arith_defs]:
   "?c : \<Sum>plus : ?A .
          \<Prod>x:N. Eq(N, plus`0`x, x)
                 \<times>  (\<Prod>y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))"
-apply intr
-apply eqintr
-apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
-apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
-apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
-apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
-apply (rule_tac [3] p = "y" in NC_succ)
-  (**  by (resolve_tac @{context} comp_rls 3);  caused excessive branching  **)
-apply rew
-done
+  apply intr
+    apply eqintr
+    apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
+     apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
+         apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
+          apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
+              apply (rule_tac [3] p = "y" in NC_succ)
+    (**  by (resolve_tac @{context} comp_rls 3);  caused excessive branching  **)
+                apply rew
+  done
 
 end