--- a/src/HOL/Limits.thy Thu Oct 16 11:03:48 2025 +0200
+++ b/src/HOL/Limits.thy Fri Oct 17 15:42:50 2025 +0100
@@ -1249,6 +1249,34 @@
shows "continuous_on s (\<lambda>x. (f x) / (g x))"
using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
+lemma continuous_cmult_left_iff:
+ fixes c::"'a::real_normed_field"
+ assumes "c \<noteq> 0"
+ shows "continuous F (\<lambda>x. c * f x) \<longleftrightarrow> continuous F f"
+ by (simp add: assms continuous_def)
+
+lemma continuous_cmult_right_iff:
+ fixes c::"'a::real_normed_field"
+ assumes "c \<noteq> 0"
+ shows "continuous F (\<lambda>x. f x * c) \<longleftrightarrow> continuous F f"
+ by (simp add: assms continuous_def)
+
+lemma continuous_cdivide_iff:
+ fixes c::"'a::real_normed_field"
+ assumes "c \<noteq> 0"
+ shows "continuous F (\<lambda>x. f x / c) \<longleftrightarrow> continuous F f"
+ using assms by (auto simp: continuous_def divide_inverse)
+
+lemma continuous_cong:
+ assumes "eventually (\<lambda>x. f x = g x) F" "f (Lim F (\<lambda>x. x)) = g (Lim F (\<lambda>x. x))"
+ shows "continuous F f \<longleftrightarrow> continuous F g"
+ unfolding continuous_def using assms filterlim_cong by force
+
+lemma continuous_at_within_cong:
+ assumes "f x = g x" "eventually (\<lambda>x. f x = g x) (at x within S)"
+ shows "continuous (at x within S) f \<longleftrightarrow> continuous (at x within S) g"
+ using assms by (simp add: continuous_within filterlim_cong)
+
lemma tendsto_power_int [tendsto_intros]:
fixes a :: "'a::real_normed_div_algebra"
assumes f: "(f \<longlongrightarrow> a) F"