src/HOL/Wellfounded_Recursion.ML
changeset 15341 254f6f00b60e
parent 15340 cd18d7b73a64
child 15342 13bd3d12ec2f
--- a/src/HOL/Wellfounded_Recursion.ML	Mon Nov 29 11:25:32 2004 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,333 +0,0 @@
-(*  Title:      HOL/Wellfounded_Recursion.ML
-    ID:         $Id$
-    Author:     Tobias Nipkow, with minor changes by Konrad Slind
-    Copyright   1992  University of Cambridge/1995 TU Munich
-
-Wellfoundedness, induction, and  recursion
-*)
-
-Goal "x = y ==> H x z = H y z";
-by (Asm_simp_tac 1);
-val H_cong2 = (*freeze H!*)
-	      read_instantiate [("H","H")] (result());
-
-val [prem] = Goalw [wf_def]
- "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)";
-by (Clarify_tac 1);
-by (rtac prem 1);
-by (assume_tac 1);
-qed "wfUNIVI";
-
-(*Restriction to domain A.  If r is well-founded over A then wf(r)*)
-val [prem1,prem2] = Goalw [wf_def]
- "[| r <= A <*> A;  \
-\    !!x P. [| ALL x. (ALL y. (y,x) : r --> P y) --> P x;  x:A |] ==> P x |]  \
-\ ==>  wf r";
-by (cut_facts_tac [prem1] 1);
-by (blast_tac (claset() addIs [prem2]) 1);
-qed "wfI";
-
-val major::prems = Goalw [wf_def]
-    "[| wf(r);          \
-\       !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x) \
-\    |]  ==>  P(a)";
-by (rtac (major RS spec RS mp RS spec) 1);
-by (blast_tac (claset() addIs prems) 1);
-qed "wf_induct";
-
-(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
-fun wf_ind_tac a prems i = 
-    EVERY [res_inst_tac [("a",a)] wf_induct i,
-           rename_last_tac a ["1"] (i+1),
-           ares_tac prems i];
-
-Goal "wf(r) ==> ALL x. (a,x):r --> (x,a)~:r";
-by (wf_ind_tac "a" [] 1);
-by (Blast_tac 1);
-qed_spec_mp "wf_not_sym";
-
-(* [| wf r;  ~Z ==> (a,x) : r;  (x,a) ~: r ==> Z |] ==> Z *)
-bind_thm ("wf_asym", cla_make_elim wf_not_sym);
-
-Goal "wf(r) ==> (a,a) ~: r";
-by (blast_tac (claset() addEs [wf_asym]) 1);
-qed "wf_not_refl";
-Addsimps [wf_not_refl];
-
-(* [| wf r;  (a,a) ~: r ==> PROP W |] ==> PROP W *)
-bind_thm ("wf_irrefl", make_elim wf_not_refl);
-
-(*transitive closure of a wf relation is wf! *)
-Goal "wf(r) ==> wf(r^+)";
-by (stac wf_def 1);
-by (Clarify_tac 1);
-(*must retain the universal formula for later use!*)
-by (rtac allE 1 THEN assume_tac 1);
-by (etac mp 1);
-by (eres_inst_tac [("a","x")] wf_induct 1);
-by (blast_tac (claset() addEs [tranclE]) 1);
-qed "wf_trancl";
-
-Goal "wf (r^-1) ==> wf ((r^+)^-1)";
-by (stac (trancl_converse RS sym) 1);
-by (etac wf_trancl 1);
-qed "wf_converse_trancl";
-
-
-(*----------------------------------------------------------------------------
- * Minimal-element characterization of well-foundedness
- *---------------------------------------------------------------------------*)
-
-Goalw [wf_def] "wf r ==> x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)";
-by (dtac spec 1);
-by (etac (mp RS spec) 1);
-by (Blast_tac 1);
-val lemma1 = result();
-
-Goalw [wf_def] "(ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)) ==> wf r";
-by (Clarify_tac 1);
-by (dres_inst_tac [("x", "{x. ~ P x}")] spec 1);
-by (Blast_tac 1);
-val lemma2 = result();
-
-Goal "wf r = (ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q))";
-by (blast_tac (claset() addSIs [lemma1, lemma2]) 1);
-qed "wf_eq_minimal";
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of subsets
- *---------------------------------------------------------------------------*)
-
-Goal "[| wf(r);  p<=r |] ==> wf(p)";
-by (full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1);
-by (Fast_tac 1);
-qed "wf_subset";
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of the empty relation.
- *---------------------------------------------------------------------------*)
-
-Goal "wf({})";
-by (simp_tac (simpset() addsimps [wf_def]) 1);
-qed "wf_empty";
-AddIffs [wf_empty];
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of `insert'
- *---------------------------------------------------------------------------*)
-
-Goal "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)";
-by (rtac iffI 1);
- by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl] 
-	addIs [rtrancl_into_trancl1,wf_subset,impOfSubs rtrancl_mono]) 1);
-by (asm_full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1);
-by Safe_tac;
-by (EVERY1[rtac allE, assume_tac, etac impE, Blast_tac]);
-by (etac bexE 1);
-by (rename_tac "a" 1 THEN case_tac "a = x" 1);
- by (res_inst_tac [("x","a")]bexI 2);
-  by (assume_tac 3);
- by (Blast_tac 2);
-by (case_tac "y:Q" 1);
- by (Blast_tac 2);
-by (res_inst_tac [("x","{z. z:Q & (z,y) : r^*}")] allE 1);
- by (assume_tac 1);
-by (thin_tac "ALL Q. (EX x. x : Q) --> ?P Q" 1);	(*essential for speed*)
-(*Blast_tac with new substOccur fails*)
-by (best_tac (claset() addIs [converse_rtrancl_into_rtrancl]) 1);
-qed "wf_insert";
-AddIffs [wf_insert];
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of `disjoint union'
- *---------------------------------------------------------------------------*)
-
-(*Intuition behind this proof for the case of binary union:
-
-  Goal: find an (R u S)-min element of a nonempty subset A.
-  by case distinction:
-  1. There is a step a -R-> b with a,b : A.
-     Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
-     By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
-     subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
-     have an S-successor and is thus S-min in A as well.
-  2. There is no such step.
-     Pick an S-min element of A. In this case it must be an R-min
-     element of A as well.
-
-*)
-
-Goal "[| ALL i:I. wf(r i); \
-\        ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {} & \
-\                                         Domain(r j) Int Range(r i) = {} \
-\     |] ==> wf(UN i:I. r i)";
-by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1);
-by (Clarify_tac 1);
-by (rename_tac "A a" 1 THEN case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i" 1);
- by (Asm_full_simp_tac 2);
- by (Best_tac 2);  (*much faster than Blast_tac*)
-by (Clarify_tac 1);
-by (EVERY1[dtac bspec, assume_tac,
-	   eres_inst_tac [("x","{a. a:A & (EX b:A. (b,a) : r i)}")] allE]);
-by (EVERY1[etac allE, etac impE]);
- by (ALLGOALS Blast_tac);
-qed "wf_UN";
-
-Goalw [Union_def]
- "[| ALL r:R. wf r; \
-\    ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {} & \
-\                                 Domain s Int Range r = {} \
-\ |] ==> wf(Union R)";
-by (blast_tac (claset() addIs [wf_UN]) 1);
-qed "wf_Union";
-
-Goal "[| wf r; wf s; Domain r Int Range s = {}; Domain s Int Range r = {} \
-\     |] ==> wf(r Un s)";
-by (rtac (simplify (simpset()) (read_instantiate[("R","{r,s}")]wf_Union)) 1);
-by (Blast_tac 1);
-by (Blast_tac 1);
-qed "wf_Un";
-
-(*---------------------------------------------------------------------------
- * Wellfoundedness of `image'
- *---------------------------------------------------------------------------*)
-
-Goal "[| wf r; inj f |] ==> wf(prod_fun f f ` r)";
-by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1);
-by (Clarify_tac 1);
-by (case_tac "EX p. f p : Q" 1);
-by (eres_inst_tac [("x","{p. f p : Q}")]allE 1);
-by (fast_tac (claset() addDs [injD]) 1);
-by (Blast_tac 1);
-qed "wf_prod_fun_image";
-
-(*** acyclic ***)
-
-Goalw [acyclic_def] "ALL x. (x, x) ~: r^+ ==> acyclic r";
-by (assume_tac 1);
-qed "acyclicI";
-
-Goalw [acyclic_def] "wf r ==> acyclic r";
-by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl]) 1);
-qed "wf_acyclic";
-
-Goalw [acyclic_def] "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)";
-by (simp_tac (simpset() addsimps [trancl_insert]) 1);
-by (blast_tac (claset() addIs [rtrancl_trans]) 1);
-qed "acyclic_insert";
-AddIffs [acyclic_insert];
-
-Goalw [acyclic_def] "acyclic(r^-1) = acyclic r";
-by (simp_tac (simpset() addsimps [trancl_converse]) 1);
-qed "acyclic_converse";
-AddIffs [acyclic_converse];
-
-Goalw [acyclic_def,antisym_def] "acyclic r ==> antisym(r^*)";
-by (blast_tac (claset() addEs [rtranclE]
-     addIs [rtrancl_into_trancl1,rtrancl_trancl_trancl]) 1);
-qed "acyclic_impl_antisym_rtrancl";
-
-(* Other direction:
-acyclic = no loops
-antisym = only self loops
-Goalw [acyclic_def,antisym_def] "antisym(r^* ) ==> acyclic(r - Id)";
-==> "antisym(r^* ) = acyclic(r - Id)";
-*)
-
-Goalw [acyclic_def] "[| acyclic s; r <= s |] ==> acyclic r";
-by (blast_tac (claset() addIs [trancl_mono]) 1);
-qed "acyclic_subset";
-
-(** cut **)
-
-(*This rewrite rule works upon formulae; thus it requires explicit use of
-  H_cong to expose the equality*)
-Goalw [cut_def] "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))";
-by (simp_tac (HOL_ss addsimps [expand_fun_eq]) 1);
-qed "cuts_eq";
-
-Goalw [cut_def] "(x,a):r ==> (cut f r a)(x) = f(x)";
-by (asm_simp_tac HOL_ss 1);
-qed "cut_apply";
-
-(*** Inductive characterization of wfrec combinator; for details see:   ***)
-(*** John Harrison, "Inductive definitions: automation and application" ***)
-
-Goalw [adm_wf_def]
-  "[| adm_wf R F; wf R |] ==> EX! y. (x, y) : wfrec_rel R F";
-by (wf_ind_tac "x" [] 1);
-by (rtac ex1I 1);
-by (res_inst_tac [("g","%x. THE y. (x, y) : wfrec_rel R F")] wfrec_rel.wfrecI 1);
-by (fast_tac (claset() addSDs [theI']) 1); 
-by (etac wfrec_rel.elim 1);
-by (Asm_full_simp_tac 1);
-byev [etac allE 1, etac allE 1, etac allE 1, etac mp 1];
-by (fast_tac (claset() addIs [the_equality RS sym]) 1);
-qed "wfrec_unique";
-
-Goalw [adm_wf_def] "adm_wf R (%f x. F (cut f R x) x)";
-by (strip_tac 1);
-by (rtac (cuts_eq RS iffD2 RS subst) 1);
-by (atac 1);
-by (rtac refl 1);
-qed "adm_lemma";
-
-Goalw [wfrec_def]
-    "wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a";
-by (rtac (adm_lemma RS wfrec_unique RS the1_equality) 1);
-by (atac 1);
-by (rtac wfrec_rel.wfrecI 1);
-by (strip_tac 1);
-by (etac (adm_lemma RS wfrec_unique RS theI') 1);
-qed "wfrec";
-
-
-(*---------------------------------------------------------------------------
- * This form avoids giant explosions in proofs.  NOTE USE OF == 
- *---------------------------------------------------------------------------*)
-Goal "[| f==wfrec r H;  wf(r) |] ==> f(a) = H (cut f r a) a";
-by Auto_tac;
-by (blast_tac (claset() addIs [wfrec]) 1);   
-qed "def_wfrec";
-
-
-(**** TFL variants ****)
-
-Goal "ALL R. wf R --> \
-\      (ALL P. (ALL x. (ALL y. (y,x):R --> P y) --> P x) --> (ALL x. P x))";
-by (Clarify_tac 1);
-by (res_inst_tac [("r","R"),("P","P"), ("a","x")] wf_induct 1);
-by (assume_tac 1);
-by (Blast_tac 1);
-qed"tfl_wf_induct";
-
-Goal "ALL f R. (x,a):R --> (cut f R a)(x) = f(x)";
-by (Clarify_tac 1);
-by (rtac cut_apply 1);
-by (assume_tac 1);
-qed"tfl_cut_apply";
-
-Goal "ALL M R f. (f=wfrec R M) --> wf R --> (ALL x. f x = M (cut f R x) x)";
-by (Clarify_tac 1);
-by (etac wfrec 1);
-qed "tfl_wfrec";
-
-(*LEAST and wellorderings*)
-(* ### see also wf_linord_ex_has_least and its consequences in Wellfounded_Relations.ML *)
-
-Goal "P (k::'a::wellorder) --> P (LEAST x. P(x)) & (LEAST x. P(x)) <= k";
-by (res_inst_tac [("a","k")] (wf RS wf_induct) 1);
-by (rtac impI 1);
-by (rtac classical 1);
-by (res_inst_tac [("s","x")] (Least_equality RS ssubst) 1);
-by Auto_tac;
-by (auto_tac (claset(), simpset() addsimps [linorder_not_less RS sym]));  
-bind_thm("wellorder_LeastI",   result() RS mp RS conjunct1);
-bind_thm("wellorder_Least_le", result() RS mp RS conjunct2);
-
-Goal "[| k < (LEAST x. P x) |] ==> ~P (k::'a::wellorder)";
-by (full_simp_tac (simpset() addsimps [linorder_not_le RS sym]) 1);
-by (etac contrapos_nn 1);
-by (etac wellorder_Least_le 1);
-qed "wellorder_not_less_Least";
-