--- a/src/HOL/Hahn_Banach/Zorn_Lemma.thy Sat Nov 16 20:22:26 2024 +0100
+++ b/src/HOL/Hahn_Banach/Zorn_Lemma.thy Sat Nov 16 21:36:34 2024 +0100
@@ -27,17 +27,15 @@
proof
fix c assume "c \<in> chains S"
show "\<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
- proof cases
+ proof (cases "c = {}")
txt \<open>If \<open>c\<close> is an empty chain, then every element in \<open>S\<close> is an upper
bound of \<open>c\<close>.\<close>
-
- assume "c = {}"
+ case True
with aS show ?thesis by fast
-
+ next
txt \<open>If \<open>c\<close> is non-empty, then \<open>\<Union>c\<close> is an upper bound of \<open>c\<close>, lying in
\<open>S\<close>.\<close>
- next
- assume "c \<noteq> {}"
+ case False
show ?thesis
proof
show "\<forall>z \<in> c. z \<subseteq> \<Union>c" by fast