changeset 20217 | 25b068a99d2b |
parent 20186 | 56207a6f4cc5 |
child 20254 | 58b71535ed00 |
--- a/src/HOL/Integ/IntDef.thy Wed Jul 26 13:31:07 2006 +0200 +++ b/src/HOL/Integ/IntDef.thy Wed Jul 26 19:23:04 2006 +0200 @@ -387,7 +387,7 @@ lemma nat: "nat (Abs_Integ (intrel``{(x,y)})) = x-y" proof - have "(\<lambda>(x,y). {x-y}) respects intrel" - by (simp add: congruent_def, arith) + by (simp add: congruent_def, arith) thus ?thesis by (simp add: nat_def UN_equiv_class [OF equiv_intrel]) qed