doc-src/IsarImplementation/Thy/document/Logic.tex
changeset 30296 25eb9a499966
child 30355 8066d80cd51e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/document/Logic.tex	Fri Mar 06 11:28:07 2009 +0100
@@ -0,0 +1,959 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Logic}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{theory}\isamarkupfalse%
+\ Logic\isanewline
+\isakeyword{imports}\ Base\isanewline
+\isakeyword{begin}%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isamarkupchapter{Primitive logic \label{ch:logic}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The logical foundations of Isabelle/Isar are that of the Pure logic,
+  which has been introduced as a Natural Deduction framework in
+  \cite{paulson700}.  This is essentially the same logic as ``\isa{{\isasymlambda}HOL}'' in the more abstract setting of Pure Type Systems (PTS)
+  \cite{Barendregt-Geuvers:2001}, although there are some key
+  differences in the specific treatment of simple types in
+  Isabelle/Pure.
+
+  Following type-theoretic parlance, the Pure logic consists of three
+  levels of \isa{{\isasymlambda}}-calculus with corresponding arrows, \isa{{\isasymRightarrow}} for syntactic function space (terms depending on terms), \isa{{\isasymAnd}} for universal quantification (proofs depending on terms), and
+  \isa{{\isasymLongrightarrow}} for implication (proofs depending on proofs).
+
+  Derivations are relative to a logical theory, which declares type
+  constructors, constants, and axioms.  Theory declarations support
+  schematic polymorphism, which is strictly speaking outside the
+  logic.\footnote{This is the deeper logical reason, why the theory
+  context \isa{{\isasymTheta}} is separate from the proof context \isa{{\isasymGamma}}
+  of the core calculus.}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Types \label{sec:types}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The language of types is an uninterpreted order-sorted first-order
+  algebra; types are qualified by ordered type classes.
+
+  \medskip A \emph{type class} is an abstract syntactic entity
+  declared in the theory context.  The \emph{subclass relation} \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}} is specified by stating an acyclic
+  generating relation; the transitive closure is maintained
+  internally.  The resulting relation is an ordering: reflexive,
+  transitive, and antisymmetric.
+
+  A \emph{sort} is a list of type classes written as \isa{s\ {\isacharequal}\ {\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub m{\isacharbraceright}}, which represents symbolic
+  intersection.  Notationally, the curly braces are omitted for
+  singleton intersections, i.e.\ any class \isa{c} may be read as
+  a sort \isa{{\isacharbraceleft}c{\isacharbraceright}}.  The ordering on type classes is extended to
+  sorts according to the meaning of intersections: \isa{{\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}\ c\isactrlisub m{\isacharbraceright}\ {\isasymsubseteq}\ {\isacharbraceleft}d\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlisub n{\isacharbraceright}} iff
+  \isa{{\isasymforall}j{\isachardot}\ {\isasymexists}i{\isachardot}\ c\isactrlisub i\ {\isasymsubseteq}\ d\isactrlisub j}.  The empty intersection
+  \isa{{\isacharbraceleft}{\isacharbraceright}} refers to the universal sort, which is the largest
+  element wrt.\ the sort order.  The intersections of all (finitely
+  many) classes declared in the current theory are the minimal
+  elements wrt.\ the sort order.
+
+  \medskip A \emph{fixed type variable} is a pair of a basic name
+  (starting with a \isa{{\isacharprime}} character) and a sort constraint, e.g.\
+  \isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ s{\isacharparenright}} which is usually printed as \isa{{\isasymalpha}\isactrlisub s}.
+  A \emph{schematic type variable} is a pair of an indexname and a
+  sort constraint, e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ s{\isacharparenright}} which is usually
+  printed as \isa{{\isacharquery}{\isasymalpha}\isactrlisub s}.
+
+  Note that \emph{all} syntactic components contribute to the identity
+  of type variables, including the sort constraint.  The core logic
+  handles type variables with the same name but different sorts as
+  different, although some outer layers of the system make it hard to
+  produce anything like this.
+
+  A \emph{type constructor} \isa{{\isasymkappa}} is a \isa{k}-ary operator
+  on types declared in the theory.  Type constructor application is
+  written postfix as \isa{{\isacharparenleft}{\isasymalpha}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlisub k{\isacharparenright}{\isasymkappa}}.  For
+  \isa{k\ {\isacharequal}\ {\isadigit{0}}} the argument tuple is omitted, e.g.\ \isa{prop}
+  instead of \isa{{\isacharparenleft}{\isacharparenright}prop}.  For \isa{k\ {\isacharequal}\ {\isadigit{1}}} the parentheses
+  are omitted, e.g.\ \isa{{\isasymalpha}\ list} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharparenright}list}.
+  Further notation is provided for specific constructors, notably the
+  right-associative infix \isa{{\isasymalpha}\ {\isasymRightarrow}\ {\isasymbeta}} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharcomma}\ {\isasymbeta}{\isacharparenright}fun}.
+  
+  A \emph{type} is defined inductively over type variables and type
+  constructors as follows: \isa{{\isasymtau}\ {\isacharequal}\ {\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharquery}{\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharparenleft}{\isasymtau}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlsub k{\isacharparenright}{\isasymkappa}}.
+
+  A \emph{type abbreviation} is a syntactic definition \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} of an arbitrary type expression \isa{{\isasymtau}} over
+  variables \isa{\isactrlvec {\isasymalpha}}.  Type abbreviations appear as type
+  constructors in the syntax, but are expanded before entering the
+  logical core.
+
+  A \emph{type arity} declares the image behavior of a type
+  constructor wrt.\ the algebra of sorts: \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}s} means that \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub k{\isacharparenright}{\isasymkappa}} is
+  of sort \isa{s} if every argument type \isa{{\isasymtau}\isactrlisub i} is
+  of sort \isa{s\isactrlisub i}.  Arity declarations are implicitly
+  completed, i.e.\ \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c} entails \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c{\isacharprime}} for any \isa{c{\isacharprime}\ {\isasymsupseteq}\ c}.
+
+  \medskip The sort algebra is always maintained as \emph{coregular},
+  which means that type arities are consistent with the subclass
+  relation: for any type constructor \isa{{\isasymkappa}}, and classes \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}, and arities \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{1}}{\isacharparenright}c\isactrlisub {\isadigit{1}}} and \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{2}}{\isacharparenright}c\isactrlisub {\isadigit{2}}} holds \isa{\isactrlvec s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ \isactrlvec s\isactrlisub {\isadigit{2}}} component-wise.
+
+  The key property of a coregular order-sorted algebra is that sort
+  constraints can be solved in a most general fashion: for each type
+  constructor \isa{{\isasymkappa}} and sort \isa{s} there is a most general
+  vector of argument sorts \isa{{\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}} such
+  that a type scheme \isa{{\isacharparenleft}{\isasymalpha}\isactrlbsub s\isactrlisub {\isadigit{1}}\isactrlesub {\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlbsub s\isactrlisub k\isactrlesub {\isacharparenright}{\isasymkappa}} is of sort \isa{s}.
+  Consequently, type unification has most general solutions (modulo
+  equivalence of sorts), so type-inference produces primary types as
+  expected \cite{nipkow-prehofer}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML type}{class}\verb|type class| \\
+  \indexdef{}{ML type}{sort}\verb|type sort| \\
+  \indexdef{}{ML type}{arity}\verb|type arity| \\
+  \indexdef{}{ML type}{typ}\verb|type typ| \\
+  \indexdef{}{ML}{map\_atyps}\verb|map_atyps: (typ -> typ) -> typ -> typ| \\
+  \indexdef{}{ML}{fold\_atyps}\verb|fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexdef{}{ML}{Sign.subsort}\verb|Sign.subsort: theory -> sort * sort -> bool| \\
+  \indexdef{}{ML}{Sign.of\_sort}\verb|Sign.of_sort: theory -> typ * sort -> bool| \\
+  \indexdef{}{ML}{Sign.add\_types}\verb|Sign.add_types: (string * int * mixfix) list -> theory -> theory| \\
+  \indexdef{}{ML}{Sign.add\_tyabbrs\_i}\verb|Sign.add_tyabbrs_i: |\isasep\isanewline%
+\verb|  (string * string list * typ * mixfix) list -> theory -> theory| \\
+  \indexdef{}{ML}{Sign.primitive\_class}\verb|Sign.primitive_class: string * class list -> theory -> theory| \\
+  \indexdef{}{ML}{Sign.primitive\_classrel}\verb|Sign.primitive_classrel: class * class -> theory -> theory| \\
+  \indexdef{}{ML}{Sign.primitive\_arity}\verb|Sign.primitive_arity: arity -> theory -> theory| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|class| represents type classes; this is an alias for
+  \verb|string|.
+
+  \item \verb|sort| represents sorts; this is an alias for
+  \verb|class list|.
+
+  \item \verb|arity| represents type arities; this is an alias for
+  triples of the form \isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} for \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s} described above.
+
+  \item \verb|typ| represents types; this is a datatype with
+  constructors \verb|TFree|, \verb|TVar|, \verb|Type|.
+
+  \item \verb|map_atyps|~\isa{f\ {\isasymtau}} applies the mapping \isa{f}
+  to all atomic types (\verb|TFree|, \verb|TVar|) occurring in \isa{{\isasymtau}}.
+
+  \item \verb|fold_atyps|~\isa{f\ {\isasymtau}} iterates the operation \isa{f} over all occurrences of atomic types (\verb|TFree|, \verb|TVar|)
+  in \isa{{\isasymtau}}; the type structure is traversed from left to right.
+
+  \item \verb|Sign.subsort|~\isa{thy\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ s\isactrlisub {\isadigit{2}}{\isacharparenright}}
+  tests the subsort relation \isa{s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ s\isactrlisub {\isadigit{2}}}.
+
+  \item \verb|Sign.of_sort|~\isa{thy\ {\isacharparenleft}{\isasymtau}{\isacharcomma}\ s{\isacharparenright}} tests whether type
+  \isa{{\isasymtau}} is of sort \isa{s}.
+
+  \item \verb|Sign.add_types|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ k{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares a new
+  type constructors \isa{{\isasymkappa}} with \isa{k} arguments and
+  optional mixfix syntax.
+
+  \item \verb|Sign.add_tyabbrs_i|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec {\isasymalpha}{\isacharcomma}\ {\isasymtau}{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}}
+  defines a new type abbreviation \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} with
+  optional mixfix syntax.
+
+  \item \verb|Sign.primitive_class|~\isa{{\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub n{\isacharbrackright}{\isacharparenright}} declares a new class \isa{c}, together with class
+  relations \isa{c\ {\isasymsubseteq}\ c\isactrlisub i}, for \isa{i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n}.
+
+  \item \verb|Sign.primitive_classrel|~\isa{{\isacharparenleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ c\isactrlisub {\isadigit{2}}{\isacharparenright}} declares the class relation \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}.
+
+  \item \verb|Sign.primitive_arity|~\isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} declares
+  the arity \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s}.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsection{Terms \label{sec:terms}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The language of terms is that of simply-typed \isa{{\isasymlambda}}-calculus
+  with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
+  or \cite{paulson-ml2}), with the types being determined by the
+  corresponding binders.  In contrast, free variables and constants
+  are have an explicit name and type in each occurrence.
+
+  \medskip A \emph{bound variable} is a natural number \isa{b},
+  which accounts for the number of intermediate binders between the
+  variable occurrence in the body and its binding position.  For
+  example, the de-Bruijn term \isa{{\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isadigit{1}}\ {\isacharplus}\ {\isadigit{0}}} would
+  correspond to \isa{{\isasymlambda}x\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}y\isactrlbsub nat\isactrlesub {\isachardot}\ x\ {\isacharplus}\ y} in a named
+  representation.  Note that a bound variable may be represented by
+  different de-Bruijn indices at different occurrences, depending on
+  the nesting of abstractions.
+
+  A \emph{loose variable} is a bound variable that is outside the
+  scope of local binders.  The types (and names) for loose variables
+  can be managed as a separate context, that is maintained as a stack
+  of hypothetical binders.  The core logic operates on closed terms,
+  without any loose variables.
+
+  A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
+  \isa{{\isacharparenleft}x{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed \isa{x\isactrlisub {\isasymtau}}.  A
+  \emph{schematic variable} is a pair of an indexname and a type,
+  e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}x{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{{\isacharquery}x\isactrlisub {\isasymtau}}.
+
+  \medskip A \emph{constant} is a pair of a basic name and a type,
+  e.g.\ \isa{{\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{c\isactrlisub {\isasymtau}}.  Constants are declared in the context as polymorphic
+  families \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}, meaning that all substitution instances
+  \isa{c\isactrlisub {\isasymtau}} for \isa{{\isasymtau}\ {\isacharequal}\ {\isasymsigma}{\isasymvartheta}} are valid.
+
+  The vector of \emph{type arguments} of constant \isa{c\isactrlisub {\isasymtau}}
+  wrt.\ the declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is defined as the codomain of
+  the matcher \isa{{\isasymvartheta}\ {\isacharequal}\ {\isacharbraceleft}{\isacharquery}{\isasymalpha}\isactrlisub {\isadigit{1}}\ {\isasymmapsto}\ {\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isacharquery}{\isasymalpha}\isactrlisub n\ {\isasymmapsto}\ {\isasymtau}\isactrlisub n{\isacharbraceright}} presented in canonical order \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}}.  Within a given theory context,
+  there is a one-to-one correspondence between any constant \isa{c\isactrlisub {\isasymtau}} and the application \isa{c{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}} of its type arguments.  For example, with \isa{plus\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}}, the instance \isa{plus\isactrlbsub nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\isactrlesub } corresponds to \isa{plus{\isacharparenleft}nat{\isacharparenright}}.
+
+  Constant declarations \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} may contain sort constraints
+  for type variables in \isa{{\isasymsigma}}.  These are observed by
+  type-inference as expected, but \emph{ignored} by the core logic.
+  This means the primitive logic is able to reason with instances of
+  polymorphic constants that the user-level type-checker would reject
+  due to violation of type class restrictions.
+
+  \medskip An \emph{atomic} term is either a variable or constant.  A
+  \emph{term} is defined inductively over atomic terms, with
+  abstraction and application as follows: \isa{t\ {\isacharequal}\ b\ {\isacharbar}\ x\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isacharquery}x\isactrlisub {\isasymtau}\ {\isacharbar}\ c\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isasymlambda}\isactrlisub {\isasymtau}{\isachardot}\ t\ {\isacharbar}\ t\isactrlisub {\isadigit{1}}\ t\isactrlisub {\isadigit{2}}}.
+  Parsing and printing takes care of converting between an external
+  representation with named bound variables.  Subsequently, we shall
+  use the latter notation instead of internal de-Bruijn
+  representation.
+
+  The inductive relation \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} assigns a (unique) type to a
+  term according to the structure of atomic terms, abstractions, and
+  applicatins:
+  \[
+  \infer{\isa{a\isactrlisub {\isasymtau}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}{}
+  \qquad
+  \infer{\isa{{\isacharparenleft}{\isasymlambda}x\isactrlsub {\isasymtau}{\isachardot}\ t{\isacharparenright}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}
+  \qquad
+  \infer{\isa{t\ u\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}} & \isa{u\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}
+  \]
+  A \emph{well-typed term} is a term that can be typed according to these rules.
+
+  Typing information can be omitted: type-inference is able to
+  reconstruct the most general type of a raw term, while assigning
+  most general types to all of its variables and constants.
+  Type-inference depends on a context of type constraints for fixed
+  variables, and declarations for polymorphic constants.
+
+  The identity of atomic terms consists both of the name and the type
+  component.  This means that different variables \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{1}}\isactrlesub } and \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{2}}\isactrlesub } may become the same after type
+  instantiation.  Some outer layers of the system make it hard to
+  produce variables of the same name, but different types.  In
+  contrast, mixed instances of polymorphic constants occur frequently.
+
+  \medskip The \emph{hidden polymorphism} of a term \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}
+  is the set of type variables occurring in \isa{t}, but not in
+  \isa{{\isasymsigma}}.  This means that the term implicitly depends on type
+  arguments that are not accounted in the result type, i.e.\ there are
+  different type instances \isa{t{\isasymvartheta}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} and \isa{t{\isasymvartheta}{\isacharprime}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with the same type.  This slightly
+  pathological situation notoriously demands additional care.
+
+  \medskip A \emph{term abbreviation} is a syntactic definition \isa{c\isactrlisub {\isasymsigma}\ {\isasymequiv}\ t} of a closed term \isa{t} of type \isa{{\isasymsigma}},
+  without any hidden polymorphism.  A term abbreviation looks like a
+  constant in the syntax, but is expanded before entering the logical
+  core.  Abbreviations are usually reverted when printing terms, using
+  \isa{t\ {\isasymrightarrow}\ c\isactrlisub {\isasymsigma}} as rules for higher-order rewriting.
+
+  \medskip Canonical operations on \isa{{\isasymlambda}}-terms include \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion: \isa{{\isasymalpha}}-conversion refers to capture-free
+  renaming of bound variables; \isa{{\isasymbeta}}-conversion contracts an
+  abstraction applied to an argument term, substituting the argument
+  in the body: \isa{{\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}a} becomes \isa{b{\isacharbrackleft}a{\isacharslash}x{\isacharbrackright}}; \isa{{\isasymeta}}-conversion contracts vacuous application-abstraction: \isa{{\isasymlambda}x{\isachardot}\ f\ x} becomes \isa{f}, provided that the bound variable
+  does not occur in \isa{f}.
+
+  Terms are normally treated modulo \isa{{\isasymalpha}}-conversion, which is
+  implicit in the de-Bruijn representation.  Names for bound variables
+  in abstractions are maintained separately as (meaningless) comments,
+  mostly for parsing and printing.  Full \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion is
+  commonplace in various standard operations (\secref{sec:obj-rules})
+  that are based on higher-order unification and matching.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML type}{term}\verb|type term| \\
+  \indexdef{}{ML}{op aconv}\verb|op aconv: term * term -> bool| \\
+  \indexdef{}{ML}{map\_types}\verb|map_types: (typ -> typ) -> term -> term| \\
+  \indexdef{}{ML}{fold\_types}\verb|fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a| \\
+  \indexdef{}{ML}{map\_aterms}\verb|map_aterms: (term -> term) -> term -> term| \\
+  \indexdef{}{ML}{fold\_aterms}\verb|fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexdef{}{ML}{fastype\_of}\verb|fastype_of: term -> typ| \\
+  \indexdef{}{ML}{lambda}\verb|lambda: term -> term -> term| \\
+  \indexdef{}{ML}{betapply}\verb|betapply: term * term -> term| \\
+  \indexdef{}{ML}{Sign.declare\_const}\verb|Sign.declare_const: Properties.T -> (binding * typ) * mixfix ->|\isasep\isanewline%
+\verb|  theory -> term * theory| \\
+  \indexdef{}{ML}{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> Properties.T -> binding * term ->|\isasep\isanewline%
+\verb|  theory -> (term * term) * theory| \\
+  \indexdef{}{ML}{Sign.const\_typargs}\verb|Sign.const_typargs: theory -> string * typ -> typ list| \\
+  \indexdef{}{ML}{Sign.const\_instance}\verb|Sign.const_instance: theory -> string * typ list -> typ| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|term| represents de-Bruijn terms, with comments in
+  abstractions, and explicitly named free variables and constants;
+  this is a datatype with constructors \verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|, \verb|Abs|, \verb|op $|.
+
+  \item \isa{t}~\verb|aconv|~\isa{u} checks \isa{{\isasymalpha}}-equivalence of two terms.  This is the basic equality relation
+  on type \verb|term|; raw datatype equality should only be used
+  for operations related to parsing or printing!
+
+  \item \verb|map_types|~\isa{f\ t} applies the mapping \isa{f} to all types occurring in \isa{t}.
+
+  \item \verb|fold_types|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of types in \isa{t}; the term
+  structure is traversed from left to right.
+
+  \item \verb|map_aterms|~\isa{f\ t} applies the mapping \isa{f}
+  to all atomic terms (\verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|) occurring in \isa{t}.
+
+  \item \verb|fold_aterms|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of atomic terms (\verb|Bound|, \verb|Free|,
+  \verb|Var|, \verb|Const|) in \isa{t}; the term structure is
+  traversed from left to right.
+
+  \item \verb|fastype_of|~\isa{t} determines the type of a
+  well-typed term.  This operation is relatively slow, despite the
+  omission of any sanity checks.
+
+  \item \verb|lambda|~\isa{a\ b} produces an abstraction \isa{{\isasymlambda}a{\isachardot}\ b}, where occurrences of the atomic term \isa{a} in the
+  body \isa{b} are replaced by bound variables.
+
+  \item \verb|betapply|~\isa{{\isacharparenleft}t{\isacharcomma}\ u{\isacharparenright}} produces an application \isa{t\ u}, with topmost \isa{{\isasymbeta}}-conversion if \isa{t} is an
+  abstraction.
+
+  \item \verb|Sign.declare_const|~\isa{properties\ {\isacharparenleft}{\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharparenright}{\isacharcomma}\ mx{\isacharparenright}}
+  declares a new constant \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with optional mixfix
+  syntax.
+
+  \item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ properties\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}}
+  introduces a new term abbreviation \isa{c\ {\isasymequiv}\ t}.
+
+  \item \verb|Sign.const_typargs|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} and \verb|Sign.const_instance|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharbrackright}{\isacharparenright}}
+  convert between two representations of polymorphic constants: full
+  type instance vs.\ compact type arguments form.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsection{Theorems \label{sec:thms}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A \emph{proposition} is a well-typed term of type \isa{prop}, a
+  \emph{theorem} is a proven proposition (depending on a context of
+  hypotheses and the background theory).  Primitive inferences include
+  plain Natural Deduction rules for the primary connectives \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} of the framework.  There is also a builtin
+  notion of equality/equivalence \isa{{\isasymequiv}}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Primitive connectives and rules \label{sec:prim-rules}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The theory \isa{Pure} contains constant declarations for the
+  primitive connectives \isa{{\isasymAnd}}, \isa{{\isasymLongrightarrow}}, and \isa{{\isasymequiv}} of
+  the logical framework, see \figref{fig:pure-connectives}.  The
+  derivability judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is
+  defined inductively by the primitive inferences given in
+  \figref{fig:prim-rules}, with the global restriction that the
+  hypotheses must \emph{not} contain any schematic variables.  The
+  builtin equality is conceptually axiomatized as shown in
+  \figref{fig:pure-equality}, although the implementation works
+  directly with derived inferences.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  \isa{all\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymalpha}\ {\isasymRightarrow}\ prop{\isacharparenright}\ {\isasymRightarrow}\ prop} & universal quantification (binder \isa{{\isasymAnd}}) \\
+  \isa{{\isasymLongrightarrow}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & implication (right associative infix) \\
+  \isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\
+  \end{tabular}
+  \caption{Primitive connectives of Pure}\label{fig:pure-connectives}
+  \end{center}
+  \end{figure}
+
+  \begin{figure}[htb]
+  \begin{center}
+  \[
+  \infer[\isa{{\isacharparenleft}axiom{\isacharparenright}}]{\isa{{\isasymturnstile}\ A}}{\isa{A\ {\isasymin}\ {\isasymTheta}}}
+  \qquad
+  \infer[\isa{{\isacharparenleft}assume{\isacharparenright}}]{\isa{A\ {\isasymturnstile}\ A}}{}
+  \]
+  \[
+  \infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
+  \qquad
+  \infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}a{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}
+  \]
+  \[
+  \infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isacharminus}\ A\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B}}
+  \qquad
+  \infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymunion}\ {\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ B}}{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B} & \isa{{\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ A}}
+  \]
+  \caption{Primitive inferences of Pure}\label{fig:prim-rules}
+  \end{center}
+  \end{figure}
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}\ a\ {\isasymequiv}\ b{\isacharbrackleft}a{\isacharbrackright}} & \isa{{\isasymbeta}}-conversion \\
+  \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity \\
+  \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution \\
+  \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\
+  \isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & logical equivalence \\
+  \end{tabular}
+  \caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
+  \end{center}
+  \end{figure}
+
+  The introduction and elimination rules for \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} are analogous to formation of dependently typed \isa{{\isasymlambda}}-terms representing the underlying proof objects.  Proof terms
+  are irrelevant in the Pure logic, though; they cannot occur within
+  propositions.  The system provides a runtime option to record
+  explicit proof terms for primitive inferences.  Thus all three
+  levels of \isa{{\isasymlambda}}-calculus become explicit: \isa{{\isasymRightarrow}} for
+  terms, and \isa{{\isasymAnd}{\isacharslash}{\isasymLongrightarrow}} for proofs (cf.\
+  \cite{Berghofer-Nipkow:2000:TPHOL}).
+
+  Observe that locally fixed parameters (as in \isa{{\isasymAnd}{\isacharunderscore}intro}) need
+  not be recorded in the hypotheses, because the simple syntactic
+  types of Pure are always inhabitable.  ``Assumptions'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} for type-membership are only present as long as some \isa{x\isactrlisub {\isasymtau}} occurs in the statement body.\footnote{This is the key
+  difference to ``\isa{{\isasymlambda}HOL}'' in the PTS framework
+  \cite{Barendregt-Geuvers:2001}, where hypotheses \isa{x\ {\isacharcolon}\ A} are
+  treated uniformly for propositions and types.}
+
+  \medskip The axiomatization of a theory is implicitly closed by
+  forming all instances of type and term variables: \isa{{\isasymturnstile}\ A{\isasymvartheta}} holds for any substitution instance of an axiom
+  \isa{{\isasymturnstile}\ A}.  By pushing substitutions through derivations
+  inductively, we also get admissible \isa{generalize} and \isa{instance} rules as shown in \figref{fig:subst-rules}.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \[
+  \infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} & \isa{{\isasymalpha}\ {\isasymnotin}\ {\isasymGamma}}}
+  \quad
+  \infer[\quad\isa{{\isacharparenleft}generalize{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
+  \]
+  \[
+  \infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymtau}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}
+  \quad
+  \infer[\quad\isa{{\isacharparenleft}instantiate{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}t{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}
+  \]
+  \caption{Admissible substitution rules}\label{fig:subst-rules}
+  \end{center}
+  \end{figure}
+
+  Note that \isa{instantiate} does not require an explicit
+  side-condition, because \isa{{\isasymGamma}} may never contain schematic
+  variables.
+
+  In principle, variables could be substituted in hypotheses as well,
+  but this would disrupt the monotonicity of reasoning: deriving
+  \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymturnstile}\ B{\isasymvartheta}} from \isa{{\isasymGamma}\ {\isasymturnstile}\ B} is
+  correct, but \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymsupseteq}\ {\isasymGamma}} does not necessarily hold:
+  the result belongs to a different proof context.
+
+  \medskip An \emph{oracle} is a function that produces axioms on the
+  fly.  Logically, this is an instance of the \isa{axiom} rule
+  (\figref{fig:prim-rules}), but there is an operational difference.
+  The system always records oracle invocations within derivations of
+  theorems by a unique tag.
+
+  Axiomatizations should be limited to the bare minimum, typically as
+  part of the initial logical basis of an object-logic formalization.
+  Later on, theories are usually developed in a strictly definitional
+  fashion, by stating only certain equalities over new constants.
+
+  A \emph{simple definition} consists of a constant declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} together with an axiom \isa{{\isasymturnstile}\ c\ {\isasymequiv}\ t}, where \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is a closed term without any hidden polymorphism.  The RHS
+  may depend on further defined constants, but not \isa{c} itself.
+  Definitions of functions may be presented as \isa{c\ \isactrlvec x\ {\isasymequiv}\ t} instead of the puristic \isa{c\ {\isasymequiv}\ {\isasymlambda}\isactrlvec x{\isachardot}\ t}.
+
+  An \emph{overloaded definition} consists of a collection of axioms
+  for the same constant, with zero or one equations \isa{c{\isacharparenleft}{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}{\isacharparenright}\ {\isasymequiv}\ t} for each type constructor \isa{{\isasymkappa}} (for
+  distinct variables \isa{\isactrlvec {\isasymalpha}}).  The RHS may mention
+  previously defined constants as above, or arbitrary constants \isa{d{\isacharparenleft}{\isasymalpha}\isactrlisub i{\isacharparenright}} for some \isa{{\isasymalpha}\isactrlisub i} projected from \isa{\isactrlvec {\isasymalpha}}.  Thus overloaded definitions essentially work by
+  primitive recursion over the syntactic structure of a single type
+  argument.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML type}{ctyp}\verb|type ctyp| \\
+  \indexdef{}{ML type}{cterm}\verb|type cterm| \\
+  \indexdef{}{ML}{Thm.ctyp\_of}\verb|Thm.ctyp_of: theory -> typ -> ctyp| \\
+  \indexdef{}{ML}{Thm.cterm\_of}\verb|Thm.cterm_of: theory -> term -> cterm| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexdef{}{ML type}{thm}\verb|type thm| \\
+  \indexdef{}{ML}{proofs}\verb|proofs: int ref| \\
+  \indexdef{}{ML}{Thm.assume}\verb|Thm.assume: cterm -> thm| \\
+  \indexdef{}{ML}{Thm.forall\_intr}\verb|Thm.forall_intr: cterm -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.forall\_elim}\verb|Thm.forall_elim: cterm -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.implies\_intr}\verb|Thm.implies_intr: cterm -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.implies\_elim}\verb|Thm.implies_elim: thm -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.generalize}\verb|Thm.generalize: string list * string list -> int -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.instantiate}\verb|Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm| \\
+  \indexdef{}{ML}{Thm.axiom}\verb|Thm.axiom: theory -> string -> thm| \\
+  \indexdef{}{ML}{Thm.add\_oracle}\verb|Thm.add_oracle: binding * ('a -> cterm) -> theory|\isasep\isanewline%
+\verb|  -> (string * ('a -> thm)) * theory| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexdef{}{ML}{Theory.add\_axioms\_i}\verb|Theory.add_axioms_i: (binding * term) list -> theory -> theory| \\
+  \indexdef{}{ML}{Theory.add\_deps}\verb|Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory| \\
+  \indexdef{}{ML}{Theory.add\_defs\_i}\verb|Theory.add_defs_i: bool -> bool -> (binding * term) list -> theory -> theory| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|ctyp| and \verb|cterm| represent certified types
+  and terms, respectively.  These are abstract datatypes that
+  guarantee that its values have passed the full well-formedness (and
+  well-typedness) checks, relative to the declarations of type
+  constructors, constants etc. in the theory.
+
+  \item \verb|Thm.ctyp_of|~\isa{thy\ {\isasymtau}} and \verb|Thm.cterm_of|~\isa{thy\ t} explicitly checks types and terms,
+  respectively.  This also involves some basic normalizations, such
+  expansion of type and term abbreviations from the theory context.
+
+  Re-certification is relatively slow and should be avoided in tight
+  reasoning loops.  There are separate operations to decompose
+  certified entities (including actual theorems).
+
+  \item \verb|thm| represents proven propositions.  This is an
+  abstract datatype that guarantees that its values have been
+  constructed by basic principles of the \verb|Thm| module.
+  Every \verb|thm| value contains a sliding back-reference to the
+  enclosing theory, cf.\ \secref{sec:context-theory}.
+
+  \item \verb|proofs| determines the detail of proof recording within
+  \verb|thm| values: \verb|0| records only the names of oracles,
+  \verb|1| records oracle names and propositions, \verb|2| additionally
+  records full proof terms.  Officially named theorems that contribute
+  to a result are always recorded.
+
+  \item \verb|Thm.assume|, \verb|Thm.forall_intr|, \verb|Thm.forall_elim|, \verb|Thm.implies_intr|, and \verb|Thm.implies_elim|
+  correspond to the primitive inferences of \figref{fig:prim-rules}.
+
+  \item \verb|Thm.generalize|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharcomma}\ \isactrlvec x{\isacharparenright}}
+  corresponds to the \isa{generalize} rules of
+  \figref{fig:subst-rules}.  Here collections of type and term
+  variables are generalized simultaneously, specified by the given
+  basic names.
+
+  \item \verb|Thm.instantiate|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}\isactrlisub s{\isacharcomma}\ \isactrlvec x\isactrlisub {\isasymtau}{\isacharparenright}} corresponds to the \isa{instantiate} rules
+  of \figref{fig:subst-rules}.  Type variables are substituted before
+  term variables.  Note that the types in \isa{\isactrlvec x\isactrlisub {\isasymtau}}
+  refer to the instantiated versions.
+
+  \item \verb|Thm.axiom|~\isa{thy\ name} retrieves a named
+  axiom, cf.\ \isa{axiom} in \figref{fig:prim-rules}.
+
+  \item \verb|Thm.add_oracle|~\isa{{\isacharparenleft}binding{\isacharcomma}\ oracle{\isacharparenright}} produces a named
+  oracle rule, essentially generating arbitrary axioms on the fly,
+  cf.\ \isa{axiom} in \figref{fig:prim-rules}.
+
+  \item \verb|Theory.add_axioms_i|~\isa{{\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ A{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares
+  arbitrary propositions as axioms.
+
+  \item \verb|Theory.add_deps|~\isa{name\ c\isactrlisub {\isasymtau}\ \isactrlvec d\isactrlisub {\isasymsigma}} declares dependencies of a named specification
+  for constant \isa{c\isactrlisub {\isasymtau}}, relative to existing
+  specifications for constants \isa{\isactrlvec d\isactrlisub {\isasymsigma}}.
+
+  \item \verb|Theory.add_defs_i|~\isa{unchecked\ overloaded\ {\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ c\ \isactrlvec x\ {\isasymequiv}\ t{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} states a definitional axiom for an existing
+  constant \isa{c}.  Dependencies are recorded (cf.\ \verb|Theory.add_deps|), unless the \isa{unchecked} option is set.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Auxiliary definitions%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Theory \isa{Pure} provides a few auxiliary definitions, see
+  \figref{fig:pure-aux}.  These special constants are normally not
+  exposed to the user, but appear in internal encodings.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  \isa{conjunction\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & (infix \isa{{\isacharampersand}}) \\
+  \isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\[1ex]
+  \isa{prop\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop} & (prefix \isa{{\isacharhash}}, suppressed) \\
+  \isa{{\isacharhash}A\ {\isasymequiv}\ A} \\[1ex]
+  \isa{term\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & (prefix \isa{TERM}) \\
+  \isa{term\ x\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}A{\isachardot}\ A\ {\isasymLongrightarrow}\ A{\isacharparenright}} \\[1ex]
+  \isa{TYPE\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself} & (prefix \isa{TYPE}) \\
+  \isa{{\isacharparenleft}unspecified{\isacharparenright}} \\
+  \end{tabular}
+  \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
+  \end{center}
+  \end{figure}
+
+  Derived conjunction rules include introduction \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B}, and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}.
+  Conjunction allows to treat simultaneous assumptions and conclusions
+  uniformly.  For example, multiple claims are intermediately
+  represented as explicit conjunction, but this is refined into
+  separate sub-goals before the user continues the proof; the final
+  result is projected into a list of theorems (cf.\
+  \secref{sec:tactical-goals}).
+
+  The \isa{prop} marker (\isa{{\isacharhash}}) makes arbitrarily complex
+  propositions appear as atomic, without changing the meaning: \isa{{\isasymGamma}\ {\isasymturnstile}\ A} and \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isacharhash}A} are interchangeable.  See
+  \secref{sec:tactical-goals} for specific operations.
+
+  The \isa{term} marker turns any well-typed term into a derivable
+  proposition: \isa{{\isasymturnstile}\ TERM\ t} holds unconditionally.  Although
+  this is logically vacuous, it allows to treat terms and proofs
+  uniformly, similar to a type-theoretic framework.
+
+  The \isa{TYPE} constructor is the canonical representative of
+  the unspecified type \isa{{\isasymalpha}\ itself}; it essentially injects the
+  language of types into that of terms.  There is specific notation
+  \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} for \isa{TYPE\isactrlbsub {\isasymtau}\ itself\isactrlesub }.
+  Although being devoid of any particular meaning, the \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} accounts for the type \isa{{\isasymtau}} within the term
+  language.  In particular, \isa{TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}} may be used as formal
+  argument in primitive definitions, in order to circumvent hidden
+  polymorphism (cf.\ \secref{sec:terms}).  For example, \isa{c\ TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}\ {\isasymequiv}\ A{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} defines \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself\ {\isasymRightarrow}\ prop} in terms of
+  a proposition \isa{A} that depends on an additional type
+  argument, which is essentially a predicate on types.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML}{Conjunction.intr}\verb|Conjunction.intr: thm -> thm -> thm| \\
+  \indexdef{}{ML}{Conjunction.elim}\verb|Conjunction.elim: thm -> thm * thm| \\
+  \indexdef{}{ML}{Drule.mk\_term}\verb|Drule.mk_term: cterm -> thm| \\
+  \indexdef{}{ML}{Drule.dest\_term}\verb|Drule.dest_term: thm -> cterm| \\
+  \indexdef{}{ML}{Logic.mk\_type}\verb|Logic.mk_type: typ -> term| \\
+  \indexdef{}{ML}{Logic.dest\_type}\verb|Logic.dest_type: term -> typ| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|Conjunction.intr| derives \isa{A\ {\isacharampersand}\ B} from \isa{A} and \isa{B}.
+
+  \item \verb|Conjunction.elim| derives \isa{A} and \isa{B}
+  from \isa{A\ {\isacharampersand}\ B}.
+
+  \item \verb|Drule.mk_term| derives \isa{TERM\ t}.
+
+  \item \verb|Drule.dest_term| recovers term \isa{t} from \isa{TERM\ t}.
+
+  \item \verb|Logic.mk_type|~\isa{{\isasymtau}} produces the term \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}}.
+
+  \item \verb|Logic.dest_type|~\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} recovers the type
+  \isa{{\isasymtau}}.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsection{Object-level rules \label{sec:obj-rules}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The primitive inferences covered so far mostly serve foundational
+  purposes.  User-level reasoning usually works via object-level rules
+  that are represented as theorems of Pure.  Composition of rules
+  involves \emph{backchaining}, \emph{higher-order unification} modulo
+  \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion of \isa{{\isasymlambda}}-terms, and so-called
+  \emph{lifting} of rules into a context of \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} connectives.  Thus the full power of higher-order Natural
+  Deduction in Isabelle/Pure becomes readily available.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Hereditary Harrop Formulae%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The idea of object-level rules is to model Natural Deduction
+  inferences in the style of Gentzen \cite{Gentzen:1935}, but we allow
+  arbitrary nesting similar to \cite{extensions91}.  The most basic
+  rule format is that of a \emph{Horn Clause}:
+  \[
+  \infer{\isa{A}}{\isa{A\isactrlsub {\isadigit{1}}} & \isa{{\isasymdots}} & \isa{A\isactrlsub n}}
+  \]
+  where \isa{A{\isacharcomma}\ A\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlsub n} are atomic propositions
+  of the framework, usually of the form \isa{Trueprop\ B}, where
+  \isa{B} is a (compound) object-level statement.  This
+  object-level inference corresponds to an iterated implication in
+  Pure like this:
+  \[
+  \isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ A}
+  \]
+  As an example consider conjunction introduction: \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isasymand}\ B}.  Any parameters occurring in such rule statements are
+  conceptionally treated as arbitrary:
+  \[
+  \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ A\isactrlsub {\isadigit{1}}\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m\ {\isasymLongrightarrow}\ A\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}
+  \]
+
+  Nesting of rules means that the positions of \isa{A\isactrlsub i} may
+  again hold compound rules, not just atomic propositions.
+  Propositions of this format are called \emph{Hereditary Harrop
+  Formulae} in the literature \cite{Miller:1991}.  Here we give an
+  inductive characterization as follows:
+
+  \medskip
+  \begin{tabular}{ll}
+  \isa{\isactrlbold x} & set of variables \\
+  \isa{\isactrlbold A} & set of atomic propositions \\
+  \isa{\isactrlbold H\ \ {\isacharequal}\ \ {\isasymAnd}\isactrlbold x\isactrlsup {\isacharasterisk}{\isachardot}\ \isactrlbold H\isactrlsup {\isacharasterisk}\ {\isasymLongrightarrow}\ \isactrlbold A} & set of Hereditary Harrop Formulas \\
+  \end{tabular}
+  \medskip
+
+  \noindent Thus we essentially impose nesting levels on propositions
+  formed from \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}}.  At each level there is a
+  prefix of parameters and compound premises, concluding an atomic
+  proposition.  Typical examples are \isa{{\isasymlongrightarrow}}-introduction \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymlongrightarrow}\ B} or mathematical induction \isa{P\ {\isadigit{0}}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}n{\isachardot}\ P\ n\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n}.  Even deeper nesting occurs in well-founded
+  induction \isa{{\isacharparenleft}{\isasymAnd}x{\isachardot}\ {\isacharparenleft}{\isasymAnd}y{\isachardot}\ y\ {\isasymprec}\ x\ {\isasymLongrightarrow}\ P\ y{\isacharparenright}\ {\isasymLongrightarrow}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ P\ x}, but this
+  already marks the limit of rule complexity seen in practice.
+
+  \medskip Regular user-level inferences in Isabelle/Pure always
+  maintain the following canonical form of results:
+
+  \begin{itemize}
+
+  \item Normalization by \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}},
+  which is a theorem of Pure, means that quantifiers are pushed in
+  front of implication at each level of nesting.  The normal form is a
+  Hereditary Harrop Formula.
+
+  \item The outermost prefix of parameters is represented via
+  schematic variables: instead of \isa{{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x} we have \isa{\isactrlvec H\ {\isacharquery}\isactrlvec x\ {\isasymLongrightarrow}\ A\ {\isacharquery}\isactrlvec x}.
+  Note that this representation looses information about the order of
+  parameters, and vacuous quantifiers vanish automatically.
+
+  \end{itemize}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML}{MetaSimplifier.norm\_hhf}\verb|MetaSimplifier.norm_hhf: thm -> thm| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|MetaSimplifier.norm_hhf|~\isa{thm} normalizes the given
+  theorem according to the canonical form specified above.  This is
+  occasionally helpful to repair some low-level tools that do not
+  handle Hereditary Harrop Formulae properly.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Rule composition%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The rule calculus of Isabelle/Pure provides two main inferences:
+  \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} (i.e.\ back-chaining of rules) and
+  \hyperlink{inference.assumption}{\mbox{\isa{assumption}}} (i.e.\ closing a branch), both modulo
+  higher-order unification.  There are also combined variants, notably
+  \hyperlink{inference.elim-resolution}{\mbox{\isa{elim{\isacharunderscore}resolution}}} and \hyperlink{inference.dest-resolution}{\mbox{\isa{dest{\isacharunderscore}resolution}}}.
+
+  To understand the all-important \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle,
+  we first consider raw \indexdef{}{inference}{composition}\hypertarget{inference.composition}{\hyperlink{inference.composition}{\mbox{\isa{composition}}}} (modulo
+  higher-order unification with substitution \isa{{\isasymvartheta}}):
+  \[
+  \infer[(\indexdef{}{inference}{composition}\hypertarget{inference.composition}{\hyperlink{inference.composition}{\mbox{\isa{composition}}}})]{\isa{\isactrlvec A{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
+  {\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B} & \isa{B{\isacharprime}\ {\isasymLongrightarrow}\ C} & \isa{B{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}}}
+  \]
+  Here the conclusion of the first rule is unified with the premise of
+  the second; the resulting rule instance inherits the premises of the
+  first and conclusion of the second.  Note that \isa{C} can again
+  consist of iterated implications.  We can also permute the premises
+  of the second rule back-and-forth in order to compose with \isa{B{\isacharprime}} in any position (subsequently we shall always refer to
+  position 1 w.l.o.g.).
+
+  In \hyperlink{inference.composition}{\mbox{\isa{composition}}} the internal structure of the common
+  part \isa{B} and \isa{B{\isacharprime}} is not taken into account.  For
+  proper \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} we require \isa{B} to be atomic,
+  and explicitly observe the structure \isa{{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x} of the premise of the second rule.  The
+  idea is to adapt the first rule by ``lifting'' it into this context,
+  by means of iterated application of the following inferences:
+  \[
+  \infer[(\indexdef{}{inference}{imp\_lift}\hypertarget{inference.imp-lift}{\hyperlink{inference.imp-lift}{\mbox{\isa{imp{\isacharunderscore}lift}}}})]{\isa{{\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ \isactrlvec A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ B{\isacharparenright}}}{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B}}
+  \]
+  \[
+  \infer[(\indexdef{}{inference}{all\_lift}\hypertarget{inference.all-lift}{\hyperlink{inference.all-lift}{\mbox{\isa{all{\isacharunderscore}lift}}}})]{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}}}{\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a}}
+  \]
+  By combining raw composition with lifting, we get full \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} as follows:
+  \[
+  \infer[(\indexdef{}{inference}{resolution}\hypertarget{inference.resolution}{\hyperlink{inference.resolution}{\mbox{\isa{resolution}}}})]
+  {\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
+  {\begin{tabular}{l}
+    \isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a} \\
+    \isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} \\
+    \isa{{\isacharparenleft}{\isasymlambda}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}} \\
+   \end{tabular}}
+  \]
+
+  Continued resolution of rules allows to back-chain a problem towards
+  more and sub-problems.  Branches are closed either by resolving with
+  a rule of 0 premises, or by producing a ``short-circuit'' within a
+  solved situation (again modulo unification):
+  \[
+  \infer[(\indexdef{}{inference}{assumption}\hypertarget{inference.assumption}{\hyperlink{inference.assumption}{\mbox{\isa{assumption}}}})]{\isa{C{\isasymvartheta}}}
+  {\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} & \isa{A{\isasymvartheta}\ {\isacharequal}\ H\isactrlsub i{\isasymvartheta}}~~\text{(for some~\isa{i})}}
+  \]
+
+  FIXME \indexdef{}{inference}{elim\_resolution}\hypertarget{inference.elim-resolution}{\hyperlink{inference.elim-resolution}{\mbox{\isa{elim{\isacharunderscore}resolution}}}}, \indexdef{}{inference}{dest\_resolution}\hypertarget{inference.dest-resolution}{\hyperlink{inference.dest-resolution}{\mbox{\isa{dest{\isacharunderscore}resolution}}}}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexdef{}{ML}{op RS}\verb|op RS: thm * thm -> thm| \\
+  \indexdef{}{ML}{op OF}\verb|op OF: thm * thm list -> thm| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \isa{rule\isactrlsub {\isadigit{1}}\ RS\ rule\isactrlsub {\isadigit{2}}} resolves \isa{rule\isactrlsub {\isadigit{1}}} with \isa{rule\isactrlsub {\isadigit{2}}} according to the
+  \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle explained above.  Note that the
+  corresponding attribute in the Isar language is called \hyperlink{attribute.THEN}{\mbox{\isa{THEN}}}.
+
+  \item \isa{rule\ OF\ rules} resolves a list of rules with the
+  first rule, addressing its premises \isa{{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ length\ rules}
+  (operating from last to first).  This means the newly emerging
+  premises are all concatenated, without interfering.  Also note that
+  compared to \isa{RS}, the rule argument order is swapped: \isa{rule\isactrlsub {\isadigit{1}}\ RS\ rule\isactrlsub {\isadigit{2}}\ {\isacharequal}\ rule\isactrlsub {\isadigit{2}}\ OF\ {\isacharbrackleft}rule\isactrlsub {\isadigit{1}}{\isacharbrackright}}.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{end}\isamarkupfalse%
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\isanewline
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End: