--- a/src/HOL/Deriv.thy Mon Sep 23 12:59:10 2024 +0200
+++ b/src/HOL/Deriv.thy Mon Sep 23 13:32:38 2024 +0200
@@ -14,7 +14,7 @@
subsection \<open>Frechet derivative\<close>
definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
- ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_derivative)" 50)
+ ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool" (infix \<open>(has'_derivative)\<close> 50)
where "(f has_derivative f') F \<longleftrightarrow>
bounded_linear f' \<and>
((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
@@ -37,14 +37,14 @@
by simp
definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
- (infix "(has'_field'_derivative)" 50)
+ (infix \<open>(has'_field'_derivative)\<close> 50)
where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"
lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
by simp
definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
- (infix "has'_vector'_derivative" 50)
+ (infix \<open>has'_vector'_derivative\<close> 50)
where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
lemma has_vector_derivative_eq_rhs:
@@ -70,7 +70,7 @@
\<close>
abbreviation (input)
FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
- ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+ (\<open>(FDERIV (_)/ (_)/ :> (_))\<close> [1000, 1000, 60] 60)
where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"
lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
@@ -665,7 +665,7 @@
subsection \<open>Differentiability predicate\<close>
definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
- (infix "differentiable" 50)
+ (infix \<open>differentiable\<close> 50)
where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"
lemma differentiable_subset:
@@ -782,11 +782,11 @@
abbreviation (input)
DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
- ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+ (\<open>(DERIV (_)/ (_)/ :> (_))\<close> [1000, 1000, 60] 60)
where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"
abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
- (infix "(has'_real'_derivative)" 50)
+ (infix \<open>(has'_real'_derivative)\<close> 50)
where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
lemma real_differentiable_def: