src/HOL/Old_Number_Theory/Finite2.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
--- a/src/HOL/Old_Number_Theory/Finite2.thy	Tue Oct 18 07:04:08 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,184 +0,0 @@
-(*  Title:      HOL/Old_Number_Theory/Finite2.thy
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-section \<open>Finite Sets and Finite Sums\<close>
-
-theory Finite2
-imports IntFact "~~/src/HOL/Library/Infinite_Set"
-begin
-
-text\<open>
-  These are useful for combinatorial and number-theoretic counting
-  arguments.
-\<close>
-
-
-subsection \<open>Useful properties of sums and products\<close>
-
-lemma sum_same_function_zcong:
-  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
-  shows "[sum f S = sum g S] (mod m)"
-proof cases
-  assume "finite S"
-  thus ?thesis using a by induct (simp_all add: zcong_zadd)
-next
-  assume "infinite S" thus ?thesis by simp
-qed
-
-lemma prod_same_function_zcong:
-  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
-  shows "[prod f S = prod g S] (mod m)"
-proof cases
-  assume "finite S"
-  thus ?thesis using a by induct (simp_all add: zcong_zmult)
-next
-  assume "infinite S" thus ?thesis by simp
-qed
-
-lemma sum_const: "finite X ==> sum (%x. (c :: int)) X = c * int(card X)"
-by (simp add: of_nat_mult)
-
-lemma sum_const2: "finite X ==> int (sum (%x. (c :: nat)) X) =
-    int(c) * int(card X)"
-by (simp add: of_nat_mult)
-
-lemma sum_const_mult: "finite A ==> sum (%x. c * ((f x)::int)) A =
-    c * sum f A"
-  by (induct set: finite) (auto simp add: distrib_left)
-
-
-subsection \<open>Cardinality of explicit finite sets\<close>
-
-lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
-by (simp add: finite_subset)
-
-lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
-  by (rule bounded_nat_set_is_finite) blast
-
-lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
-proof -
-  have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
-  then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
-qed
-
-lemma  bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
-  apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
-      int ` {(x :: nat). x < nat n}")
-   apply (erule finite_surjI)
-   apply (auto simp add: bdd_nat_set_l_finite image_def)
-  apply (rule_tac x = "nat x" in exI, simp)
-  done
-
-lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
-  apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
-   apply (erule ssubst)
-   apply (rule bdd_int_set_l_finite)
-  apply auto
-  done
-
-lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
-proof -
-  have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
-    by auto
-  then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
-qed
-
-lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
-proof -
-  have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
-    by auto
-  then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
-qed
-
-lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
-proof (induct x)
-  case 0
-  show "card {y::nat . y < 0} = 0" by simp
-next
-  case (Suc n)
-  have "{y. y < Suc n} = insert n {y. y < n}"
-    by auto
-  then have "card {y. y < Suc n} = card (insert n {y. y < n})"
-    by auto
-  also have "... = Suc (card {y. y < n})"
-    by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
-  finally show "card {y. y < Suc n} = Suc n"
-    using \<open>card {y. y < n} = n\<close> by simp
-qed
-
-lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
-proof -
-  have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
-    by auto
-  then show ?thesis by (auto simp add: card_bdd_nat_set_l)
-qed
-
-lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
-proof -
-  assume "0 \<le> n"
-  have "inj_on (%y. int y) {y. y < nat n}"
-    by (auto simp add: inj_on_def)
-  hence "card (int ` {y. y < nat n}) = card {y. y < nat n}"
-    by (rule card_image)
-  also from \<open>0 \<le> n\<close> have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
-    apply (auto simp add: zless_nat_eq_int_zless image_def)
-    apply (rule_tac x = "nat x" in exI)
-    apply (auto simp add: nat_0_le)
-    done
-  also have "card {y. y < nat n} = nat n"
-    by (rule card_bdd_nat_set_l)
-  finally show "card {y. 0 \<le> y & y < n} = nat n" .
-qed
-
-lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
-  nat n + 1"
-proof -
-  assume "0 \<le> n"
-  moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
-  ultimately show ?thesis
-    using card_bdd_int_set_l [of "n + 1"]
-    by (auto simp add: nat_add_distrib)
-qed
-
-lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
-    card {x. 0 < x & x \<le> n} = nat n"
-proof -
-  assume "0 \<le> n"
-  have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
-    by (auto simp add: inj_on_def)
-  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
-     card {x. 0 \<le> x & x < n}"
-    by (rule card_image)
-  also from \<open>0 \<le> n\<close> have "... = nat n"
-    by (rule card_bdd_int_set_l)
-  also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
-    apply (auto simp add: image_def)
-    apply (rule_tac x = "x - 1" in exI)
-    apply arith
-    done
-  finally show "card {x. 0 < x & x \<le> n} = nat n" .
-qed
-
-lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
-  card {x. 0 < x & x < n} = nat n - 1"
-proof -
-  assume "0 < n"
-  moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
-    by simp
-  ultimately show ?thesis
-    using insert card_bdd_int_set_l_le [of "n - 1"]
-    by (auto simp add: nat_diff_distrib)
-qed
-
-lemma int_card_bdd_int_set_l_l: "0 < n ==>
-    int(card {x. 0 < x & x < n}) = n - 1"
-  apply (auto simp add: card_bdd_int_set_l_l)
-  done
-
-lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
-    int(card {x. 0 < x & x \<le> n}) = n"
-  by (auto simp add: card_bdd_int_set_l_le)
-
-
-end