--- a/src/HOL/Multivariate_Analysis/Derivative.thy Thu Nov 12 11:22:26 2015 +0100
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy Fri Nov 13 12:27:13 2015 +0000
@@ -2139,7 +2139,7 @@
have *: "\<forall>n. \<exists>f f'. \<forall>x\<in>s.
(f has_derivative (f' x)) (at x within s) \<and>
(\<forall>h. norm(f' x h - g' x h) \<le> inverse (real (Suc n)) * norm h)"
- by (metis assms(2) inverse_positive_iff_positive real_of_nat_Suc_gt_zero)
+ by (simp add: assms(2))
obtain f where
*: "\<forall>x. \<exists>f'. \<forall>xa\<in>s. (f x has_derivative f' xa) (at xa within s) \<and>
(\<forall>h. norm (f' xa h - g' xa h) \<le> inverse (real (Suc x)) * norm h)"
@@ -2221,7 +2221,7 @@
have "norm ((\<Sum>i<n. f' i x * h) - g' x * h) = norm ((\<Sum>i<n. f' i x) - g' x) * norm h"
by (simp add: norm_mult [symmetric] ring_distribs setsum_left_distrib)
also from N[OF nx] have "norm ((\<Sum>i<n. f' i x) - g' x) \<le> e" by simp
- hence "norm ((\<Sum>i<n. f' i x) - g' x) * norm h \<le> e * norm h"
+ hence "norm ((\<Sum>i<n. f' i x) - g' x) * norm h \<le> e * norm h"
by (intro mult_right_mono) simp_all
finally have "norm ((\<Sum>i<n. f' i x * h) - g' x * h) \<le> e * norm h" .
}
@@ -2245,9 +2245,9 @@
"\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x"
"\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast
from g(1)[OF \<open>x \<in> s\<close>] show "summable (\<lambda>n. f n x)" by (simp add: sums_iff)
- from g(2)[OF \<open>x \<in> s\<close>] \<open>x \<in> interior s\<close> have "(g has_field_derivative g' x) (at x)"
+ from g(2)[OF \<open>x \<in> s\<close>] \<open>x \<in> interior s\<close> have "(g has_field_derivative g' x) (at x)"
by (simp add: at_within_interior[of x s])
- also have "(g has_field_derivative g' x) (at x) \<longleftrightarrow>
+ also have "(g has_field_derivative g' x) (at x) \<longleftrightarrow>
((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' x) (at x)"
using eventually_nhds_in_nhd[OF \<open>x \<in> interior s\<close>] interior_subset[of s] g(1)
by (intro DERIV_cong_ev) (auto elim!: eventually_elim1 simp: sums_iff)
@@ -2311,7 +2311,7 @@
qed
qed (insert f' f'', auto simp: has_vector_derivative_def)
then show ?thesis
- unfolding fun_eq_iff by auto
+ unfolding fun_eq_iff by (metis scaleR_one)
qed
lemma vector_derivative_unique_at:
@@ -2350,7 +2350,7 @@
intro: someI frechet_derivative_at [symmetric])
lemma has_real_derivative:
- fixes f :: "real \<Rightarrow> real"
+ fixes f :: "real \<Rightarrow> real"
assumes "(f has_derivative f') F"
obtains c where "(f has_real_derivative c) F"
proof -
@@ -2361,7 +2361,7 @@
qed
lemma has_real_derivative_iff:
- fixes f :: "real \<Rightarrow> real"
+ fixes f :: "real \<Rightarrow> real"
shows "(\<exists>c. (f has_real_derivative c) F) = (\<exists>D. (f has_derivative D) F)"
by (metis has_field_derivative_def has_real_derivative)
@@ -2390,7 +2390,7 @@
assumes "open s" and t: "t = closure s" "x \<in> t"
shows "x islimpt t"
proof cases
- assume "x \<in> s"
+ assume "x \<in> s"
{ fix T assume "x \<in> T" "open T"
then have "open (s \<inter> T)"
using \<open>open s\<close> by auto
@@ -2579,7 +2579,7 @@
by (intro convex_onD_Icc'' convex_on_subset[OF convex] connected_contains_Icc) auto
hence "f y - f c \<le> (f x - f c) * ((c - y) / (c - x))" by simp
also have "(c - y) / (c - x) = (y - c) / (x - c)" using y xc by (simp add: field_simps)
- finally show "(f y - f c) / (y - c) \<ge> (f x - f c) / (x - c)" using y xc
+ finally show "(f y - f c) / (y - c) \<ge> (f x - f c) / (x - c)" using y xc
by (simp add: divide_simps)
qed
hence "eventually (\<lambda>y. (f y - f c) / (y - c) \<ge> (f x - f c) / (x - c)) (at c within ?A')"