src/HOL/Tools/TFL/tfl.ML
changeset 60525 278b65d9339c
parent 60517 f16e4fb20652
parent 60524 ffc1ee11759c
child 60526 fad653acf58f
--- a/src/HOL/Tools/TFL/tfl.ML	Fri Jun 19 07:53:35 2015 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1003 +0,0 @@
-(*  Title:      HOL/Tools/TFL/tfl.ML
-    Author:     Konrad Slind, Cambridge University Computer Laboratory
-
-First part of main module.
-*)
-
-signature PRIM =
-sig
-  val trace: bool Unsynchronized.ref
-  val trace_thms: Proof.context -> string -> thm list -> unit
-  val trace_cterm: Proof.context -> string -> cterm -> unit
-  type pattern
-  val mk_functional: theory -> term list -> {functional: term, pats: pattern list}
-  val wfrec_definition0: string -> term -> term -> theory -> thm * theory
-  val post_definition: Proof.context -> thm list -> thm * pattern list ->
-   {rules: thm,
-    rows: int list,
-    TCs: term list list,
-    full_pats_TCs: (term * term list) list}
-  val wfrec_eqns: theory -> xstring -> thm list -> term list ->
-   {WFR: term,
-    SV: term list,
-    proto_def: term,
-    extracta: (thm * term list) list,
-    pats: pattern list}
-  val lazyR_def: theory -> xstring -> thm list -> term list ->
-   {theory: theory,
-    rules: thm,
-    R: term,
-    SV: term list,
-    full_pats_TCs: (term * term list) list,
-    patterns : pattern list}
-  val mk_induction: theory ->
-    {fconst: term, R: term, SV: term list, pat_TCs_list: (term * term list) list} -> thm
-  val postprocess: Proof.context -> bool ->
-    {wf_tac: tactic, terminator: tactic, simplifier: cterm -> thm} ->
-    {rules: thm, induction: thm, TCs: term list list} ->
-    {rules: thm, induction: thm, nested_tcs: thm list}
-end;
-
-structure Prim: PRIM =
-struct
-
-val trace = Unsynchronized.ref false;
-
-
-fun TFL_ERR func mesg = Utils.ERR {module = "Tfl", func = func, mesg = mesg};
-
-val concl = #2 o Rules.dest_thm;
-val hyp = #1 o Rules.dest_thm;
-
-val list_mk_type = Utils.end_itlist (curry (op -->));
-
-fun front_last [] = raise TFL_ERR "front_last" "empty list"
-  | front_last [x] = ([],x)
-  | front_last (h::t) =
-     let val (pref,x) = front_last t
-     in
-        (h::pref,x)
-     end;
-
-
-(*---------------------------------------------------------------------------
- * The next function is common to pattern-match translation and
- * proof of completeness of cases for the induction theorem.
- *
- * The curried function "gvvariant" returns a function to generate distinct
- * variables that are guaranteed not to be in names.  The names of
- * the variables go u, v, ..., z, aa, ..., az, ...  The returned
- * function contains embedded refs!
- *---------------------------------------------------------------------------*)
-fun gvvariant names =
-  let val slist = Unsynchronized.ref names
-      val vname = Unsynchronized.ref "u"
-      fun new() =
-         if member (op =) (!slist) (!vname)
-         then (vname := Symbol.bump_string (!vname);  new())
-         else (slist := !vname :: !slist;  !vname)
-  in
-  fn ty => Free(new(), ty)
-  end;
-
-
-(*---------------------------------------------------------------------------
- * Used in induction theorem production. This is the simple case of
- * partitioning up pattern rows by the leading constructor.
- *---------------------------------------------------------------------------*)
-fun ipartition gv (constructors,rows) =
-  let fun pfail s = raise TFL_ERR "partition.part" s
-      fun part {constrs = [],   rows = [],   A} = rev A
-        | part {constrs = [],   rows = _::_, A} = pfail"extra cases in defn"
-        | part {constrs = _::_, rows = [],   A} = pfail"cases missing in defn"
-        | part {constrs = c::crst, rows,     A} =
-          let val (c, T) = dest_Const c
-              val L = binder_types T
-              val (in_group, not_in_group) =
-               fold_rev (fn (row as (p::rst, rhs)) =>
-                         fn (in_group,not_in_group) =>
-                  let val (pc,args) = USyntax.strip_comb p
-                  in if (#1(dest_Const pc) = c)
-                     then ((args@rst, rhs)::in_group, not_in_group)
-                     else (in_group, row::not_in_group)
-                  end)      rows ([],[])
-              val col_types = Utils.take type_of (length L, #1(hd in_group))
-          in
-          part{constrs = crst, rows = not_in_group,
-               A = {constructor = c,
-                    new_formals = map gv col_types,
-                    group = in_group}::A}
-          end
-  in part{constrs = constructors, rows = rows, A = []}
-  end;
-
-
-
-(*---------------------------------------------------------------------------
- * Each pattern carries with it a tag (i,b) where
- * i is the clause it came from and
- * b=true indicates that clause was given by the user
- * (or is an instantiation of a user supplied pattern)
- * b=false --> i = ~1
- *---------------------------------------------------------------------------*)
-
-type pattern = term * (int * bool)
-
-fun pattern_map f (tm,x) = (f tm, x);
-
-fun pattern_subst theta = pattern_map (subst_free theta);
-
-val pat_of = fst;
-fun row_of_pat x = fst (snd x);
-fun given x = snd (snd x);
-
-(*---------------------------------------------------------------------------
- * Produce an instance of a constructor, plus genvars for its arguments.
- *---------------------------------------------------------------------------*)
-fun fresh_constr ty_match colty gv c =
-  let val (_,Ty) = dest_Const c
-      val L = binder_types Ty
-      and ty = body_type Ty
-      val ty_theta = ty_match ty colty
-      val c' = USyntax.inst ty_theta c
-      val gvars = map (USyntax.inst ty_theta o gv) L
-  in (c', gvars)
-  end;
-
-
-(*---------------------------------------------------------------------------
- * Goes through a list of rows and picks out the ones beginning with a
- * pattern with constructor = name.
- *---------------------------------------------------------------------------*)
-fun mk_group name rows =
-  fold_rev (fn (row as ((prfx, p::rst), rhs)) =>
-            fn (in_group,not_in_group) =>
-               let val (pc,args) = USyntax.strip_comb p
-               in if ((#1 (Term.dest_Const pc) = name) handle TERM _ => false)
-                  then (((prfx,args@rst), rhs)::in_group, not_in_group)
-                  else (in_group, row::not_in_group) end)
-      rows ([],[]);
-
-(*---------------------------------------------------------------------------
- * Partition the rows. Not efficient: we should use hashing.
- *---------------------------------------------------------------------------*)
-fun partition _ _ (_,_,_,[]) = raise TFL_ERR "partition" "no rows"
-  | partition gv ty_match
-              (constructors, colty, res_ty, rows as (((prfx,_),_)::_)) =
-let val fresh = fresh_constr ty_match colty gv
-     fun part {constrs = [],      rows, A} = rev A
-       | part {constrs = c::crst, rows, A} =
-         let val (c',gvars) = fresh c
-             val (in_group, not_in_group) = mk_group (#1 (dest_Const c')) rows
-             val in_group' =
-                 if (null in_group)  (* Constructor not given *)
-                 then [((prfx, #2(fresh c)), (USyntax.ARB res_ty, (~1,false)))]
-                 else in_group
-         in
-         part{constrs = crst,
-              rows = not_in_group,
-              A = {constructor = c',
-                   new_formals = gvars,
-                   group = in_group'}::A}
-         end
-in part{constrs=constructors, rows=rows, A=[]}
-end;
-
-(*---------------------------------------------------------------------------
- * Misc. routines used in mk_case
- *---------------------------------------------------------------------------*)
-
-fun mk_pat (c,l) =
-  let val L = length (binder_types (type_of c))
-      fun build (prfx,tag,plist) =
-          let val (args, plist') = chop L plist
-          in (prfx,tag,list_comb(c,args)::plist') end
-  in map build l end;
-
-fun v_to_prfx (prfx, v::pats) = (v::prfx,pats)
-  | v_to_prfx _ = raise TFL_ERR "mk_case" "v_to_prfx";
-
-fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats)
-  | v_to_pats _ = raise TFL_ERR "mk_case" "v_to_pats";
-
-
-(*----------------------------------------------------------------------------
- * Translation of pattern terms into nested case expressions.
- *
- * This performs the translation and also builds the full set of patterns.
- * Thus it supports the construction of induction theorems even when an
- * incomplete set of patterns is given.
- *---------------------------------------------------------------------------*)
-
-fun mk_case ty_info ty_match usednames range_ty =
- let
- fun mk_case_fail s = raise TFL_ERR "mk_case" s
- val fresh_var = gvvariant usednames
- val divide = partition fresh_var ty_match
- fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
-   | expand constructors ty (row as ((prfx, p::rst), rhs)) =
-       if (is_Free p)
-       then let val fresh = fresh_constr ty_match ty fresh_var
-                fun expnd (c,gvs) =
-                  let val capp = list_comb(c,gvs)
-                  in ((prfx, capp::rst), pattern_subst[(p,capp)] rhs)
-                  end
-            in map expnd (map fresh constructors)  end
-       else [row]
- fun mk{rows=[],...} = mk_case_fail"no rows"
-   | mk{path=[], rows = ((prfx, []), (tm,tag))::_} =  (* Done *)
-        ([(prfx,tag,[])], tm)
-   | mk{path=[], rows = _::_} = mk_case_fail"blunder"
-   | mk{path as u::rstp, rows as ((prfx, []), rhs)::rst} =
-        mk{path = path,
-           rows = ((prfx, [fresh_var(type_of u)]), rhs)::rst}
-   | mk{path = u::rstp, rows as ((_, p::_), _)::_} =
-     let val (pat_rectangle,rights) = ListPair.unzip rows
-         val col0 = map(hd o #2) pat_rectangle
-     in
-     if (forall is_Free col0)
-     then let val rights' = map (fn(v,e) => pattern_subst[(v,u)] e)
-                                (ListPair.zip (col0, rights))
-              val pat_rectangle' = map v_to_prfx pat_rectangle
-              val (pref_patl,tm) = mk{path = rstp,
-                                      rows = ListPair.zip (pat_rectangle',
-                                                           rights')}
-          in (map v_to_pats pref_patl, tm)
-          end
-     else
-     let val pty as Type (ty_name,_) = type_of p
-     in
-     case (ty_info ty_name)
-     of NONE => mk_case_fail("Not a known datatype: "^ty_name)
-      | SOME{case_const,constructors} =>
-        let
-            val case_const_name = #1(dest_Const case_const)
-            val nrows = maps (expand constructors pty) rows
-            val subproblems = divide(constructors, pty, range_ty, nrows)
-            val groups      = map #group subproblems
-            and new_formals = map #new_formals subproblems
-            and constructors' = map #constructor subproblems
-            val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
-                           (ListPair.zip (new_formals, groups))
-            val rec_calls = map mk news
-            val (pat_rect,dtrees) = ListPair.unzip rec_calls
-            val case_functions = map USyntax.list_mk_abs
-                                  (ListPair.zip (new_formals, dtrees))
-            val types = map type_of (case_functions@[u]) @ [range_ty]
-            val case_const' = Const(case_const_name, list_mk_type types)
-            val tree = list_comb(case_const', case_functions@[u])
-            val pat_rect1 = flat (ListPair.map mk_pat (constructors', pat_rect))
-        in (pat_rect1,tree)
-        end
-     end end
- in mk
- end;
-
-
-(* Repeated variable occurrences in a pattern are not allowed. *)
-fun FV_multiset tm =
-   case (USyntax.dest_term tm)
-     of USyntax.VAR{Name = c, Ty = T} => [Free(c, T)]
-      | USyntax.CONST _ => []
-      | USyntax.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
-      | USyntax.LAMB _ => raise TFL_ERR "FV_multiset" "lambda";
-
-fun no_repeat_vars thy pat =
- let fun check [] = true
-       | check (v::rst) =
-         if member (op aconv) rst v then
-            raise TFL_ERR "no_repeat_vars"
-                          (quote (#1 (dest_Free v)) ^
-                          " occurs repeatedly in the pattern " ^
-                          quote (Syntax.string_of_term_global thy pat))
-         else check rst
- in check (FV_multiset pat)
- end;
-
-fun dest_atom (Free p) = p
-  | dest_atom (Const p) = p
-  | dest_atom  _ = raise TFL_ERR "dest_atom" "function name not an identifier";
-
-fun same_name (p,q) = #1(dest_atom p) = #1(dest_atom q);
-
-local fun mk_functional_err s = raise TFL_ERR "mk_functional" s
-      fun single [_$_] =
-              mk_functional_err "recdef does not allow currying"
-        | single [f] = f
-        | single fs  =
-              (*multiple function names?*)
-              if length (distinct same_name fs) < length fs
-              then mk_functional_err
-                   "The function being declared appears with multiple types"
-              else mk_functional_err
-                   (string_of_int (length fs) ^
-                    " distinct function names being declared")
-in
-fun mk_functional thy clauses =
- let val (L,R) = ListPair.unzip (map HOLogic.dest_eq clauses
-                   handle TERM _ => raise TFL_ERR "mk_functional"
-                        "recursion equations must use the = relation")
-     val (funcs,pats) = ListPair.unzip (map (fn (t$u) =>(t,u)) L)
-     val atom = single (distinct (op aconv) funcs)
-     val (fname,ftype) = dest_atom atom
-     val dummy = map (no_repeat_vars thy) pats
-     val rows = ListPair.zip (map (fn x => ([]:term list,[x])) pats,
-                              map_index (fn (i, t) => (t,(i,true))) R)
-     val names = List.foldr Misc_Legacy.add_term_names [] R
-     val atype = type_of(hd pats)
-     and aname = singleton (Name.variant_list names) "a"
-     val a = Free(aname,atype)
-     val ty_info = Thry.match_info thy
-     val ty_match = Thry.match_type thy
-     val range_ty = type_of (hd R)
-     val (patts, case_tm) = mk_case ty_info ty_match (aname::names) range_ty
-                                    {path=[a], rows=rows}
-     val patts1 = map (fn (_,tag,[pat]) => (pat,tag)) patts
-          handle Match => mk_functional_err "error in pattern-match translation"
-     val patts2 = Library.sort (Library.int_ord o apply2 row_of_pat) patts1
-     val finals = map row_of_pat patts2
-     val originals = map (row_of_pat o #2) rows
-     val dummy = case (subtract (op =) finals originals)
-             of [] => ()
-          | L => mk_functional_err
- ("The following clauses are redundant (covered by preceding clauses): " ^
-                   commas (map (fn i => string_of_int (i + 1)) L))
- in {functional = Abs(Long_Name.base_name fname, ftype,
-                      abstract_over (atom, absfree (aname,atype) case_tm)),
-     pats = patts2}
-end end;
-
-
-(*----------------------------------------------------------------------------
- *
- *                    PRINCIPLES OF DEFINITION
- *
- *---------------------------------------------------------------------------*)
-
-
-(*For Isabelle, the lhs of a definition must be a constant.*)
-fun const_def sign (c, Ty, rhs) =
-  singleton (Syntax.check_terms (Proof_Context.init_global sign))
-    (Const(@{const_name Pure.eq},dummyT) $ Const(c,Ty) $ rhs);
-
-(*Make all TVars available for instantiation by adding a ? to the front*)
-fun poly_tvars (Type(a,Ts)) = Type(a, map (poly_tvars) Ts)
-  | poly_tvars (TFree (a,sort)) = TVar (("?" ^ a, 0), sort)
-  | poly_tvars (TVar ((a,i),sort)) = TVar (("?" ^ a, i+1), sort);
-
-local
-  val f_eq_wfrec_R_M =
-    #ant(USyntax.dest_imp(#2(USyntax.strip_forall (concl Thms.WFREC_COROLLARY))))
-  val {lhs=f, rhs} = USyntax.dest_eq f_eq_wfrec_R_M
-  val (fname,_) = dest_Free f
-  val (wfrec,_) = USyntax.strip_comb rhs
-in
-
-fun wfrec_definition0 fid R (functional as Abs(x, Ty, _)) thy =
-  let
-    val def_name = Thm.def_name (Long_Name.base_name fid)
-    val wfrec_R_M = map_types poly_tvars (wfrec $ map_types poly_tvars R) $ functional
-    val def_term = const_def thy (fid, Ty, wfrec_R_M)
-    val ([def], thy') =
-      Global_Theory.add_defs false [Thm.no_attributes (Binding.name def_name, def_term)] thy
-  in (def, thy') end;
-
-end;
-
-
-
-(*---------------------------------------------------------------------------
- * This structure keeps track of congruence rules that aren't derived
- * from a datatype definition.
- *---------------------------------------------------------------------------*)
-fun extraction_thms thy =
- let val {case_rewrites,case_congs} = Thry.extract_info thy
- in (case_rewrites, case_congs)
- end;
-
-
-(*---------------------------------------------------------------------------
- * Pair patterns with termination conditions. The full list of patterns for
- * a definition is merged with the TCs arising from the user-given clauses.
- * There can be fewer clauses than the full list, if the user omitted some
- * cases. This routine is used to prepare input for mk_induction.
- *---------------------------------------------------------------------------*)
-fun merge full_pats TCs =
-let fun insert (p,TCs) =
-      let fun insrt ((x as (h,[]))::rst) =
-                 if (p aconv h) then (p,TCs)::rst else x::insrt rst
-            | insrt (x::rst) = x::insrt rst
-            | insrt[] = raise TFL_ERR "merge.insert" "pattern not found"
-      in insrt end
-    fun pass ([],ptcl_final) = ptcl_final
-      | pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
-in
-  pass (TCs, map (fn p => (p,[])) full_pats)
-end;
-
-
-fun givens pats = map pat_of (filter given pats);
-
-fun post_definition ctxt meta_tflCongs (def, pats) =
- let val thy = Proof_Context.theory_of ctxt
-     val tych = Thry.typecheck thy
-     val f = #lhs(USyntax.dest_eq(concl def))
-     val corollary = Rules.MATCH_MP Thms.WFREC_COROLLARY def
-     val pats' = filter given pats
-     val given_pats = map pat_of pats'
-     val rows = map row_of_pat pats'
-     val WFR = #ant(USyntax.dest_imp(concl corollary))
-     val R = #Rand(USyntax.dest_comb WFR)
-     val corollary' = Rules.UNDISCH corollary  (* put WF R on assums *)
-     val corollaries = map (fn pat => Rules.SPEC (tych pat) corollary') given_pats
-     val (case_rewrites,context_congs) = extraction_thms thy
-     (*case_ss causes minimal simplification: bodies of case expressions are
-       not simplified. Otherwise large examples (Red-Black trees) are too
-       slow.*)
-     val case_simpset =
-       put_simpset HOL_basic_ss ctxt
-          addsimps case_rewrites
-          |> fold (Simplifier.add_cong o #case_cong_weak o snd)
-              (Symtab.dest (BNF_LFP_Compat.get_all thy [BNF_LFP_Compat.Keep_Nesting]))
-     val corollaries' = map (Simplifier.simplify case_simpset) corollaries
-     val extract =
-      Rules.CONTEXT_REWRITE_RULE ctxt (f, [R], @{thm cut_apply}, meta_tflCongs @ context_congs)
-     val (rules, TCs) = ListPair.unzip (map extract corollaries')
-     val rules0 = map (rewrite_rule ctxt [Thms.CUT_DEF]) rules
-     val mk_cond_rule = Rules.FILTER_DISCH_ALL(not o curry (op aconv) WFR)
-     val rules1 = Rules.LIST_CONJ(map mk_cond_rule rules0)
- in
- {rules = rules1,
-  rows = rows,
-  full_pats_TCs = merge (map pat_of pats) (ListPair.zip (given_pats, TCs)),
-  TCs = TCs}
- end;
-
-
-(*---------------------------------------------------------------------------
- * Perform the extraction without making the definition. Definition and
- * extraction commute for the non-nested case.  (Deferred recdefs)
- *
- * The purpose of wfrec_eqns is merely to instantiate the recursion theorem
- * and extract termination conditions: no definition is made.
- *---------------------------------------------------------------------------*)
-
-fun wfrec_eqns thy fid tflCongs eqns =
- let val ctxt = Proof_Context.init_global thy
-     val {lhs,rhs} = USyntax.dest_eq (hd eqns)
-     val (f,args) = USyntax.strip_comb lhs
-     val (fname,fty) = dest_atom f
-     val (SV,a) = front_last args    (* SV = schematic variables *)
-     val g = list_comb(f,SV)
-     val h = Free(fname,type_of g)
-     val eqns1 = map (subst_free[(g,h)]) eqns
-     val {functional as Abs(x, Ty, _),  pats} = mk_functional thy eqns1
-     val given_pats = givens pats
-     (* val f = Free(x,Ty) *)
-     val Type("fun", [f_dty, f_rty]) = Ty
-     val dummy = if x<>fid then
-                        raise TFL_ERR "wfrec_eqns"
-                                      ("Expected a definition of " ^
-                                      quote fid ^ " but found one of " ^
-                                      quote x)
-                 else ()
-     val (case_rewrites,context_congs) = extraction_thms thy
-     val tych = Thry.typecheck thy
-     val WFREC_THM0 = Rules.ISPEC (tych functional) Thms.WFREC_COROLLARY
-     val Const(@{const_name All},_) $ Abs(Rname,Rtype,_) = concl WFREC_THM0
-     val R = Free (singleton (Name.variant_list (List.foldr Misc_Legacy.add_term_names [] eqns)) Rname,
-                   Rtype)
-     val WFREC_THM = Rules.ISPECL [tych R, tych g] WFREC_THM0
-     val ([proto_def, WFR],_) = USyntax.strip_imp(concl WFREC_THM)
-     val dummy =
-           if !trace then
-               writeln ("ORIGINAL PROTO_DEF: " ^
-                          Syntax.string_of_term_global thy proto_def)
-           else ()
-     val R1 = USyntax.rand WFR
-     val corollary' = Rules.UNDISCH (Rules.UNDISCH WFREC_THM)
-     val corollaries = map (fn pat => Rules.SPEC (tych pat) corollary') given_pats
-     val corollaries' = map (rewrite_rule ctxt case_rewrites) corollaries
-     val extract =
-      Rules.CONTEXT_REWRITE_RULE ctxt (f, R1::SV, @{thm cut_apply}, tflCongs @ context_congs)
- in {proto_def = proto_def,
-     SV=SV,
-     WFR=WFR,
-     pats=pats,
-     extracta = map extract corollaries'}
- end;
-
-
-(*---------------------------------------------------------------------------
- * Define the constant after extracting the termination conditions. The
- * wellfounded relation used in the definition is computed by using the
- * choice operator on the extracted conditions (plus the condition that
- * such a relation must be wellfounded).
- *---------------------------------------------------------------------------*)
-
-fun lazyR_def thy fid tflCongs eqns =
- let val {proto_def,WFR,pats,extracta,SV} =
-           wfrec_eqns thy fid tflCongs eqns
-     val R1 = USyntax.rand WFR
-     val f = #lhs(USyntax.dest_eq proto_def)
-     val (extractants,TCl) = ListPair.unzip extracta
-     val dummy = if !trace
-                 then writeln (cat_lines ("Extractants =" ::
-                  map (Display.string_of_thm_global thy) extractants))
-                 else ()
-     val TCs = fold_rev (union (op aconv)) TCl []
-     val full_rqt = WFR::TCs
-     val R' = USyntax.mk_select{Bvar=R1, Body=USyntax.list_mk_conj full_rqt}
-     val R'abs = USyntax.rand R'
-     val proto_def' = subst_free[(R1,R')] proto_def
-     val dummy = if !trace then writeln ("proto_def' = " ^
-                                         Syntax.string_of_term_global
-                                         thy proto_def')
-                           else ()
-     val {lhs,rhs} = USyntax.dest_eq proto_def'
-     val (c,args) = USyntax.strip_comb lhs
-     val (name,Ty) = dest_atom c
-     val defn = const_def thy (name, Ty, USyntax.list_mk_abs (args,rhs))
-     val ([def0], thy') =
-       thy
-       |> Global_Theory.add_defs false
-            [Thm.no_attributes (Binding.name (Thm.def_name fid), defn)]
-     val def = Thm.unvarify_global def0;
-     val ctxt' = Syntax.init_pretty_global thy';
-     val dummy =
-       if !trace then writeln ("DEF = " ^ Display.string_of_thm ctxt' def)
-       else ()
-     (* val fconst = #lhs(USyntax.dest_eq(concl def))  *)
-     val tych = Thry.typecheck thy'
-     val full_rqt_prop = map (Dcterm.mk_prop o tych) full_rqt
-         (*lcp: a lot of object-logic inference to remove*)
-     val baz = Rules.DISCH_ALL
-                 (fold_rev Rules.DISCH full_rqt_prop
-                  (Rules.LIST_CONJ extractants))
-     val dum = if !trace then writeln ("baz = " ^ Display.string_of_thm ctxt' baz) else ()
-     val f_free = Free (fid, fastype_of f)  (*'cos f is a Const*)
-     val SV' = map tych SV;
-     val SVrefls = map Thm.reflexive SV'
-     val def0 = (fold (fn x => fn th => Rules.rbeta(Thm.combination th x))
-                   SVrefls def)
-                RS meta_eq_to_obj_eq
-     val def' = Rules.MP (Rules.SPEC (tych R') (Rules.GEN ctxt' (tych R1) baz)) def0
-     val body_th = Rules.LIST_CONJ (map Rules.ASSUME full_rqt_prop)
-     val SELECT_AX = (*in this way we hope to avoid a STATIC dependence upon
-                       theory Hilbert_Choice*)
-         ML_Context.thm "Hilbert_Choice.tfl_some"
-         handle ERROR msg => cat_error msg
-    "defer_recdef requires theory Main or at least Hilbert_Choice as parent"
-     val bar = Rules.MP (Rules.ISPECL[tych R'abs, tych R1] SELECT_AX) body_th
- in {theory = thy', R=R1, SV=SV,
-     rules = fold (fn a => fn b => Rules.MP b a) (Rules.CONJUNCTS bar) def',
-     full_pats_TCs = merge (map pat_of pats) (ListPair.zip (givens pats, TCl)),
-     patterns = pats}
- end;
-
-
-
-(*----------------------------------------------------------------------------
- *
- *                           INDUCTION THEOREM
- *
- *---------------------------------------------------------------------------*)
-
-
-(*------------------------  Miscellaneous function  --------------------------
- *
- *           [x_1,...,x_n]     ?v_1...v_n. M[v_1,...,v_n]
- *     -----------------------------------------------------------
- *     ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
- *                        ...
- *                        (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
- *
- * This function is totally ad hoc. Used in the production of the induction
- * theorem. The nchotomy theorem can have clauses that look like
- *
- *     ?v1..vn. z = C vn..v1
- *
- * in which the order of quantification is not the order of occurrence of the
- * quantified variables as arguments to C. Since we have no control over this
- * aspect of the nchotomy theorem, we make the correspondence explicit by
- * pairing the incoming new variable with the term it gets beta-reduced into.
- *---------------------------------------------------------------------------*)
-
-fun alpha_ex_unroll (xlist, tm) =
-  let val (qvars,body) = USyntax.strip_exists tm
-      val vlist = #2 (USyntax.strip_comb (USyntax.rhs body))
-      val plist = ListPair.zip (vlist, xlist)
-      val args = map (the o AList.lookup (op aconv) plist) qvars
-                   handle Option.Option => raise Fail "TFL.alpha_ex_unroll: no correspondence"
-      fun build ex      []   = []
-        | build (_$rex) (v::rst) =
-           let val ex1 = Term.betapply(rex, v)
-           in  ex1 :: build ex1 rst
-           end
-     val (nex::exl) = rev (tm::build tm args)
-  in
-  (nex, ListPair.zip (args, rev exl))
-  end;
-
-
-
-(*----------------------------------------------------------------------------
- *
- *             PROVING COMPLETENESS OF PATTERNS
- *
- *---------------------------------------------------------------------------*)
-
-fun mk_case ty_info usednames thy =
- let
- val ctxt = Proof_Context.init_global thy
- val divide = ipartition (gvvariant usednames)
- val tych = Thry.typecheck thy
- fun tych_binding(x,y) = (tych x, tych y)
- fun fail s = raise TFL_ERR "mk_case" s
- fun mk{rows=[],...} = fail"no rows"
-   | mk{path=[], rows = [([], (thm, bindings))]} =
-                         Rules.IT_EXISTS ctxt (map tych_binding bindings) thm
-   | mk{path = u::rstp, rows as (p::_, _)::_} =
-     let val (pat_rectangle,rights) = ListPair.unzip rows
-         val col0 = map hd pat_rectangle
-         val pat_rectangle' = map tl pat_rectangle
-     in
-     if (forall is_Free col0) (* column 0 is all variables *)
-     then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[(u,v)]))
-                                (ListPair.zip (rights, col0))
-          in mk{path = rstp, rows = ListPair.zip (pat_rectangle', rights')}
-          end
-     else                     (* column 0 is all constructors *)
-     let val Type (ty_name,_) = type_of p
-     in
-     case (ty_info ty_name)
-     of NONE => fail("Not a known datatype: "^ty_name)
-      | SOME{constructors,nchotomy} =>
-        let val thm' = Rules.ISPEC (tych u) nchotomy
-            val disjuncts = USyntax.strip_disj (concl thm')
-            val subproblems = divide(constructors, rows)
-            val groups      = map #group subproblems
-            and new_formals = map #new_formals subproblems
-            val existentials = ListPair.map alpha_ex_unroll
-                                   (new_formals, disjuncts)
-            val constraints = map #1 existentials
-            val vexl = map #2 existentials
-            fun expnd tm (pats,(th,b)) = (pats, (Rules.SUBS ctxt [Rules.ASSUME (tych tm)] th, b))
-            val news = map (fn (nf,rows,c) => {path = nf@rstp,
-                                               rows = map (expnd c) rows})
-                           (Utils.zip3 new_formals groups constraints)
-            val recursive_thms = map mk news
-            val build_exists = Library.foldr
-                                (fn((x,t), th) =>
-                                 Rules.CHOOSE ctxt (tych x, Rules.ASSUME (tych t)) th)
-            val thms' = ListPair.map build_exists (vexl, recursive_thms)
-            val same_concls = Rules.EVEN_ORS thms'
-        in Rules.DISJ_CASESL thm' same_concls
-        end
-     end end
- in mk
- end;
-
-
-fun complete_cases thy =
- let val ctxt = Proof_Context.init_global thy
-     val tych = Thry.typecheck thy
-     val ty_info = Thry.induct_info thy
- in fn pats =>
- let val names = List.foldr Misc_Legacy.add_term_names [] pats
-     val T = type_of (hd pats)
-     val aname = singleton (Name.variant_list names) "a"
-     val vname = singleton (Name.variant_list (aname::names)) "v"
-     val a = Free (aname, T)
-     val v = Free (vname, T)
-     val a_eq_v = HOLogic.mk_eq(a,v)
-     val ex_th0 = Rules.EXISTS (tych (USyntax.mk_exists{Bvar=v,Body=a_eq_v}), tych a)
-                           (Rules.REFL (tych a))
-     val th0 = Rules.ASSUME (tych a_eq_v)
-     val rows = map (fn x => ([x], (th0,[]))) pats
- in
- Rules.GEN ctxt (tych a)
-       (Rules.RIGHT_ASSOC ctxt
-          (Rules.CHOOSE ctxt (tych v, ex_th0)
-                (mk_case ty_info (vname::aname::names)
-                 thy {path=[v], rows=rows})))
- end end;
-
-
-(*---------------------------------------------------------------------------
- * Constructing induction hypotheses: one for each recursive call.
- *
- * Note. R will never occur as a variable in the ind_clause, because
- * to do so, it would have to be from a nested definition, and we don't
- * allow nested defns to have R variable.
- *
- * Note. When the context is empty, there can be no local variables.
- *---------------------------------------------------------------------------*)
-(*
-local infix 5 ==>
-      fun (tm1 ==> tm2) = USyntax.mk_imp{ant = tm1, conseq = tm2}
-in
-fun build_ih f P (pat,TCs) =
- let val globals = USyntax.free_vars_lr pat
-     fun nested tm = is_some (USyntax.find_term (curry (op aconv) f) tm)
-     fun dest_TC tm =
-         let val (cntxt,R_y_pat) = USyntax.strip_imp(#2(USyntax.strip_forall tm))
-             val (R,y,_) = USyntax.dest_relation R_y_pat
-             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
-         in case cntxt
-              of [] => (P_y, (tm,[]))
-               | _  => let
-                    val imp = USyntax.list_mk_conj cntxt ==> P_y
-                    val lvs = gen_rems (op aconv) (USyntax.free_vars_lr imp, globals)
-                    val locals = #2(Utils.pluck (curry (op aconv) P) lvs) handle Utils.ERR _ => lvs
-                    in (USyntax.list_mk_forall(locals,imp), (tm,locals)) end
-         end
- in case TCs
-    of [] => (USyntax.list_mk_forall(globals, P$pat), [])
-     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
-                 val ind_clause = USyntax.list_mk_conj ihs ==> P$pat
-             in (USyntax.list_mk_forall(globals,ind_clause), TCs_locals)
-             end
- end
-end;
-*)
-
-local infix 5 ==>
-      fun (tm1 ==> tm2) = USyntax.mk_imp{ant = tm1, conseq = tm2}
-in
-fun build_ih f (P,SV) (pat,TCs) =
- let val pat_vars = USyntax.free_vars_lr pat
-     val globals = pat_vars@SV
-     fun nested tm = is_some (USyntax.find_term (curry (op aconv) f) tm)
-     fun dest_TC tm =
-         let val (cntxt,R_y_pat) = USyntax.strip_imp(#2(USyntax.strip_forall tm))
-             val (R,y,_) = USyntax.dest_relation R_y_pat
-             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
-         in case cntxt
-              of [] => (P_y, (tm,[]))
-               | _  => let
-                    val imp = USyntax.list_mk_conj cntxt ==> P_y
-                    val lvs = subtract (op aconv) globals (USyntax.free_vars_lr imp)
-                    val locals = #2(Utils.pluck (curry (op aconv) P) lvs) handle Utils.ERR _ => lvs
-                    in (USyntax.list_mk_forall(locals,imp), (tm,locals)) end
-         end
- in case TCs
-    of [] => (USyntax.list_mk_forall(pat_vars, P$pat), [])
-     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
-                 val ind_clause = USyntax.list_mk_conj ihs ==> P$pat
-             in (USyntax.list_mk_forall(pat_vars,ind_clause), TCs_locals)
-             end
- end
-end;
-
-(*---------------------------------------------------------------------------
- * This function makes good on the promise made in "build_ih".
- *
- * Input  is tm = "(!y. R y pat ==> P y) ==> P pat",
- *           TCs = TC_1[pat] ... TC_n[pat]
- *           thm = ih1 /\ ... /\ ih_n |- ih[pat]
- *---------------------------------------------------------------------------*)
-fun prove_case ctxt f (tm,TCs_locals,thm) =
- let val tych = Thry.typecheck (Proof_Context.theory_of ctxt)
-     val antc = tych(#ant(USyntax.dest_imp tm))
-     val thm' = Rules.SPEC_ALL thm
-     fun nested tm = is_some (USyntax.find_term (curry (op aconv) f) tm)
-     fun get_cntxt TC = tych(#ant(USyntax.dest_imp(#2(USyntax.strip_forall(concl TC)))))
-     fun mk_ih ((TC,locals),th2,nested) =
-         Rules.GENL ctxt (map tych locals)
-            (if nested then Rules.DISCH (get_cntxt TC) th2 handle Utils.ERR _ => th2
-             else if USyntax.is_imp (concl TC) then Rules.IMP_TRANS TC th2
-             else Rules.MP th2 TC)
- in
- Rules.DISCH antc
- (if USyntax.is_imp(concl thm') (* recursive calls in this clause *)
-  then let val th1 = Rules.ASSUME antc
-           val TCs = map #1 TCs_locals
-           val ylist = map (#2 o USyntax.dest_relation o #2 o USyntax.strip_imp o
-                            #2 o USyntax.strip_forall) TCs
-           val TClist = map (fn(TC,lvs) => (Rules.SPEC_ALL(Rules.ASSUME(tych TC)),lvs))
-                            TCs_locals
-           val th2list = map (fn t => Rules.SPEC (tych t) th1) ylist
-           val nlist = map nested TCs
-           val triples = Utils.zip3 TClist th2list nlist
-           val Pylist = map mk_ih triples
-       in Rules.MP thm' (Rules.LIST_CONJ Pylist) end
-  else thm')
- end;
-
-
-(*---------------------------------------------------------------------------
- *
- *         x = (v1,...,vn)  |- M[x]
- *    ---------------------------------------------
- *      ?v1 ... vn. x = (v1,...,vn) |- M[x]
- *
- *---------------------------------------------------------------------------*)
-fun LEFT_ABS_VSTRUCT ctxt tych thm =
-  let fun CHOOSER v (tm,thm) =
-        let val ex_tm = USyntax.mk_exists{Bvar=v,Body=tm}
-        in (ex_tm, Rules.CHOOSE ctxt (tych v, Rules.ASSUME (tych ex_tm)) thm)
-        end
-      val [veq] = filter (can USyntax.dest_eq) (#1 (Rules.dest_thm thm))
-      val {lhs,rhs} = USyntax.dest_eq veq
-      val L = USyntax.free_vars_lr rhs
-  in  #2 (fold_rev CHOOSER L (veq,thm))  end;
-
-
-(*----------------------------------------------------------------------------
- * Input : f, R,  and  [(pat1,TCs1),..., (patn,TCsn)]
- *
- * Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
- * recursion induction (Rinduct) by proving the antecedent of Sinduct from
- * the antecedent of Rinduct.
- *---------------------------------------------------------------------------*)
-fun mk_induction thy {fconst, R, SV, pat_TCs_list} =
-let val ctxt = Proof_Context.init_global thy
-    val tych = Thry.typecheck thy
-    val Sinduction = Rules.UNDISCH (Rules.ISPEC (tych R) Thms.WF_INDUCTION_THM)
-    val (pats,TCsl) = ListPair.unzip pat_TCs_list
-    val case_thm = complete_cases thy pats
-    val domain = (type_of o hd) pats
-    val Pname = singleton (Name.variant_list (List.foldr (Library.foldr Misc_Legacy.add_term_names)
-                              [] (pats::TCsl))) "P"
-    val P = Free(Pname, domain --> HOLogic.boolT)
-    val Sinduct = Rules.SPEC (tych P) Sinduction
-    val Sinduct_assumf = USyntax.rand ((#ant o USyntax.dest_imp o concl) Sinduct)
-    val Rassums_TCl' = map (build_ih fconst (P,SV)) pat_TCs_list
-    val (Rassums,TCl') = ListPair.unzip Rassums_TCl'
-    val Rinduct_assum = Rules.ASSUME (tych (USyntax.list_mk_conj Rassums))
-    val cases = map (fn pat => Term.betapply (Sinduct_assumf, pat)) pats
-    val tasks = Utils.zip3 cases TCl' (Rules.CONJUNCTS Rinduct_assum)
-    val proved_cases = map (prove_case ctxt fconst) tasks
-    val v =
-      Free (singleton
-        (Name.variant_list (List.foldr Misc_Legacy.add_term_names [] (map concl proved_cases))) "v",
-          domain)
-    val vtyped = tych v
-    val substs = map (Rules.SYM o Rules.ASSUME o tych o (curry HOLogic.mk_eq v)) pats
-    val proved_cases1 = ListPair.map (fn (th,th') => Rules.SUBS ctxt [th]th')
-                          (substs, proved_cases)
-    val abs_cases = map (LEFT_ABS_VSTRUCT ctxt tych) proved_cases1
-    val dant = Rules.GEN ctxt vtyped (Rules.DISJ_CASESL (Rules.ISPEC vtyped case_thm) abs_cases)
-    val dc = Rules.MP Sinduct dant
-    val Parg_ty = type_of(#Bvar(USyntax.dest_forall(concl dc)))
-    val vars = map (gvvariant[Pname]) (USyntax.strip_prod_type Parg_ty)
-    val dc' = fold_rev (Rules.GEN ctxt o tych) vars
-                       (Rules.SPEC (tych(USyntax.mk_vstruct Parg_ty vars)) dc)
-in
-   Rules.GEN ctxt (tych P) (Rules.DISCH (tych(concl Rinduct_assum)) dc')
-end
-handle Utils.ERR _ => raise TFL_ERR "mk_induction" "failed derivation";
-
-
-
-
-(*---------------------------------------------------------------------------
- *
- *                        POST PROCESSING
- *
- *---------------------------------------------------------------------------*)
-
-
-fun simplify_induction thy hth ind =
-  let val tych = Thry.typecheck thy
-      val (asl,_) = Rules.dest_thm ind
-      val (_,tc_eq_tc') = Rules.dest_thm hth
-      val tc = USyntax.lhs tc_eq_tc'
-      fun loop [] = ind
-        | loop (asm::rst) =
-          if (can (Thry.match_term thy asm) tc)
-          then Rules.UNDISCH
-                 (Rules.MATCH_MP
-                     (Rules.MATCH_MP Thms.simp_thm (Rules.DISCH (tych asm) ind))
-                     hth)
-         else loop rst
-  in loop asl
-end;
-
-
-(*---------------------------------------------------------------------------
- * The termination condition is an antecedent to the rule, and an
- * assumption to the theorem.
- *---------------------------------------------------------------------------*)
-fun elim_tc tcthm (rule,induction) =
-   (Rules.MP rule tcthm, Rules.PROVE_HYP tcthm induction)
-
-
-fun trace_thms ctxt s L =
-  if !trace then writeln (cat_lines (s :: map (Display.string_of_thm ctxt) L))
-  else ();
-
-fun trace_cterm ctxt s ct =
-  if !trace then
-    writeln (cat_lines [s, Syntax.string_of_term ctxt (Thm.term_of ct)])
-  else ();
-
-
-fun postprocess ctxt strict {wf_tac, terminator, simplifier} {rules,induction,TCs} =
-  let
-    val thy = Proof_Context.theory_of ctxt;
-    val tych = Thry.typecheck thy;
-
-   (*---------------------------------------------------------------------
-    * Attempt to eliminate WF condition. It's the only assumption of rules
-    *---------------------------------------------------------------------*)
-    val (rules1,induction1)  =
-       let val thm =
-        Rules.prove ctxt strict (HOLogic.mk_Trueprop (hd(#1(Rules.dest_thm rules))), wf_tac)
-       in (Rules.PROVE_HYP thm rules, Rules.PROVE_HYP thm induction)
-       end handle Utils.ERR _ => (rules,induction);
-
-   (*----------------------------------------------------------------------
-    * The termination condition (tc) is simplified to |- tc = tc' (there
-    * might not be a change!) and then 3 attempts are made:
-    *
-    *   1. if |- tc = T, then eliminate it with eqT; otherwise,
-    *   2. apply the terminator to tc'. If |- tc' = T then eliminate; else
-    *   3. replace tc by tc' in both the rules and the induction theorem.
-    *---------------------------------------------------------------------*)
-
-   fun simplify_tc tc (r,ind) =
-       let val tc1 = tych tc
-           val _ = trace_cterm ctxt "TC before simplification: " tc1
-           val tc_eq = simplifier tc1
-           val _ = trace_thms ctxt "result: " [tc_eq]
-       in
-       elim_tc (Rules.MATCH_MP Thms.eqT tc_eq) (r,ind)
-       handle Utils.ERR _ =>
-        (elim_tc (Rules.MATCH_MP(Rules.MATCH_MP Thms.rev_eq_mp tc_eq)
-                  (Rules.prove ctxt strict (HOLogic.mk_Trueprop(USyntax.rhs(concl tc_eq)),
-                           terminator)))
-                 (r,ind)
-         handle Utils.ERR _ =>
-          (Rules.UNDISCH(Rules.MATCH_MP (Rules.MATCH_MP Thms.simp_thm r) tc_eq),
-           simplify_induction thy tc_eq ind))
-       end
-
-   (*----------------------------------------------------------------------
-    * Nested termination conditions are harder to get at, since they are
-    * left embedded in the body of the function (and in induction
-    * theorem hypotheses). Our "solution" is to simplify them, and try to
-    * prove termination, but leave the application of the resulting theorem
-    * to a higher level. So things go much as in "simplify_tc": the
-    * termination condition (tc) is simplified to |- tc = tc' (there might
-    * not be a change) and then 2 attempts are made:
-    *
-    *   1. if |- tc = T, then return |- tc; otherwise,
-    *   2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
-    *   3. return |- tc = tc'
-    *---------------------------------------------------------------------*)
-   fun simplify_nested_tc tc =
-      let val tc_eq = simplifier (tych (#2 (USyntax.strip_forall tc)))
-      in
-      Rules.GEN_ALL ctxt
-       (Rules.MATCH_MP Thms.eqT tc_eq
-        handle Utils.ERR _ =>
-          (Rules.MATCH_MP(Rules.MATCH_MP Thms.rev_eq_mp tc_eq)
-                      (Rules.prove ctxt strict (HOLogic.mk_Trueprop (USyntax.rhs(concl tc_eq)),
-                               terminator))
-            handle Utils.ERR _ => tc_eq))
-      end
-
-   (*-------------------------------------------------------------------
-    * Attempt to simplify the termination conditions in each rule and
-    * in the induction theorem.
-    *-------------------------------------------------------------------*)
-   fun strip_imp tm = if USyntax.is_neg tm then ([],tm) else USyntax.strip_imp tm
-   fun loop ([],extras,R,ind) = (rev R, ind, extras)
-     | loop ((r,ftcs)::rst, nthms, R, ind) =
-        let val tcs = #1(strip_imp (concl r))
-            val extra_tcs = subtract (op aconv) tcs ftcs
-            val extra_tc_thms = map simplify_nested_tc extra_tcs
-            val (r1,ind1) = fold simplify_tc tcs (r,ind)
-            val r2 = Rules.FILTER_DISCH_ALL(not o USyntax.is_WFR) r1
-        in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
-        end
-   val rules_tcs = ListPair.zip (Rules.CONJUNCTS rules1, TCs)
-   val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
-in
-  {induction = ind2, rules = Rules.LIST_CONJ rules2, nested_tcs = extras}
-end;
-
-
-end;