--- a/src/ZF/Constructible/Rank.thy Mon Dec 07 10:19:30 2015 +0100
+++ b/src/ZF/Constructible/Rank.thy Mon Dec 07 10:23:50 2015 +0100
@@ -15,7 +15,7 @@
==> separation (M, \<lambda>x. x\<in>A \<longrightarrow> (\<exists>y[M]. (\<exists>p[M].
fun_apply(M,f,x,y) & pair(M,y,x,p) & p \<in> r)))"
and obase_separation:
- --\<open>part of the order type formalization\<close>
+ \<comment>\<open>part of the order type formalization\<close>
"[| M(A); M(r) |]
==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M].
ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
@@ -92,7 +92,7 @@
text\<open>Following Kunen's Theorem I 7.6, page 17. Note that this material is
not required elsewhere.\<close>
-text\<open>Can't use @{text well_ord_iso_preserving} because it needs the
+text\<open>Can't use \<open>well_ord_iso_preserving\<close> because it needs the
strong premise @{term "well_ord(A,r)"}\<close>
lemma (in M_ordertype) ord_iso_pred_imp_lt:
"[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
@@ -114,7 +114,7 @@
apply (frule restrict_ord_iso2, assumption+)
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun])
apply (frule apply_type, blast intro: ltD)
- --\<open>thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}\<close>
+ \<comment>\<open>thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}\<close>
apply (simp add: pred_iff)
apply (subgoal_tac
"\<exists>h[M]. h \<in> ord_iso(Order.pred(A,y,r), r,
@@ -137,26 +137,26 @@
definition
obase :: "[i=>o,i,i] => i" where
- --\<open>the domain of @{text om}, eventually shown to equal @{text A}\<close>
+ \<comment>\<open>the domain of \<open>om\<close>, eventually shown to equal \<open>A\<close>\<close>
"obase(M,A,r) == {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) &
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
definition
omap :: "[i=>o,i,i,i] => o" where
- --\<open>the function that maps wosets to order types\<close>
+ \<comment>\<open>the function that maps wosets to order types\<close>
"omap(M,A,r,f) ==
\<forall>z[M].
z \<in> f \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) &
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
definition
- otype :: "[i=>o,i,i,i] => o" where --\<open>the order types themselves\<close>
+ otype :: "[i=>o,i,i,i] => o" where \<comment>\<open>the order types themselves\<close>
"otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
text\<open>Can also be proved with the premise @{term "M(z)"} instead of
@{term "M(f)"}, but that version is less useful. This lemma
- is also more useful than the definition, @{text omap_def}.\<close>
+ is also more useful than the definition, \<open>omap_def\<close>.\<close>
lemma (in M_ordertype) omap_iff:
"[| omap(M,A,r,f); M(A); M(f) |]
==> z \<in> f \<longleftrightarrow>
@@ -478,7 +478,7 @@
-text\<open>@{text is_oadd_fun}: Relating the pure "language of set theory" to Isabelle/ZF\<close>
+text\<open>\<open>is_oadd_fun\<close>: Relating the pure "language of set theory" to Isabelle/ZF\<close>
lemma (in M_ord_arith) is_oadd_fun_iff:
"[| a\<le>j; M(i); M(j); M(a); M(f) |]
==> is_oadd_fun(M,i,j,a,f) \<longleftrightarrow>
@@ -602,7 +602,7 @@
"[| M(i); M(x); M(g); function(g) |]
==> M(THE z. omult_eqns(i, x, g, z))"
apply (case_tac "Ord(x)")
- prefer 2 apply (simp add: omult_eqns_Not) --\<open>trivial, non-Ord case\<close>
+ prefer 2 apply (simp add: omult_eqns_Not) \<comment>\<open>trivial, non-Ord case\<close>
apply (erule Ord_cases)
apply (simp add: omult_eqns_0)
apply (simp add: omult_eqns_succ apply_closed oadd_closed)
@@ -897,12 +897,12 @@
apply (frule is_recfun_restrict [of concl: "r^+" a])
apply (rule trans_trancl, assumption)
apply (simp_all add: r_into_trancl trancl_subset_times)
-txt\<open>Still the same goal, but with new @{text is_recfun} assumptions.\<close>
+txt\<open>Still the same goal, but with new \<open>is_recfun\<close> assumptions.\<close>
apply (simp add: wellfoundedrank_eq)
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
apply (simp_all add: transM [of a])
txt\<open>We have used equations for wellfoundedrank and now must use some
- for @{text is_recfun}.\<close>
+ for \<open>is_recfun\<close>.\<close>
apply (rule_tac a=a in rangeI)
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
r_into_trancl apply_recfun r_into_trancl)