--- a/src/ZF/Constructible/Rank_Separation.thy Mon Dec 07 10:19:30 2015 +0100
+++ b/src/ZF/Constructible/Rank_Separation.thy Mon Dec 07 10:23:50 2015 +0100
@@ -9,10 +9,10 @@
text\<open>This theory proves all instances needed for locales
- @{text "M_ordertype"} and @{text "M_wfrank"}. But the material is not
+ \<open>M_ordertype\<close> and \<open>M_wfrank\<close>. But the material is not
needed for proving the relative consistency of AC.\<close>
-subsection\<open>The Locale @{text "M_ordertype"}\<close>
+subsection\<open>The Locale \<open>M_ordertype\<close>\<close>
subsubsection\<open>Separation for Order-Isomorphisms\<close>
@@ -46,7 +46,7 @@
by (intro FOL_reflections function_reflections fun_plus_reflections)
lemma obase_separation:
- --\<open>part of the order type formalization\<close>
+ \<comment>\<open>part of the order type formalization\<close>
"[| L(A); L(r) |]
==> separation(L, \<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
@@ -109,7 +109,7 @@
-subsection\<open>Instantiating the locale @{text M_ordertype}\<close>
+subsection\<open>Instantiating the locale \<open>M_ordertype\<close>\<close>
text\<open>Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.\<close>
@@ -127,7 +127,7 @@
done
-subsection\<open>The Locale @{text "M_wfrank"}\<close>
+subsection\<open>The Locale \<open>M_wfrank\<close>\<close>
subsubsection\<open>Separation for @{term "wfrank"}\<close>
@@ -182,7 +182,7 @@
done
-subsubsection\<open>Separation for Proving @{text Ord_wfrank_range}\<close>
+subsubsection\<open>Separation for Proving \<open>Ord_wfrank_range\<close>\<close>
lemma Ord_wfrank_Reflects:
"REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>
@@ -213,7 +213,7 @@
done
-subsubsection\<open>Instantiating the locale @{text M_wfrank}\<close>
+subsubsection\<open>Instantiating the locale \<open>M_wfrank\<close>\<close>
lemma M_wfrank_axioms_L: "M_wfrank_axioms(L)"
apply (rule M_wfrank_axioms.intro)