--- a/src/HOL/Library/Nonpos_Ints.thy Tue Apr 15 17:38:20 2025 +0200
+++ b/src/HOL/Library/Nonpos_Ints.thy Wed Apr 16 11:38:38 2025 +0200
@@ -329,19 +329,7 @@
finally show ?thesis .
qed
-lemma fraction_not_in_ints:
- assumes "\<not>(n dvd m)" "n \<noteq> 0"
- shows "of_int m / of_int n \<notin> (\<int> :: 'a :: {division_ring,ring_char_0} set)"
-proof
- assume "of_int m / (of_int n :: 'a) \<in> \<int>"
- then obtain k where "of_int m / of_int n = (of_int k :: 'a)" by (elim Ints_cases)
- with assms have "of_int m = (of_int (k * n) :: 'a)" by (auto simp add: field_split_simps)
- hence "m = k * n" by (subst (asm) of_int_eq_iff)
- hence "n dvd m" by simp
- with assms(1) show False by contradiction
-qed
-
-lemma fraction_not_in_nats:
+lemma fraction_not_in_Nats:
assumes "\<not>n dvd m" "n \<noteq> 0"
shows "of_int m / of_int n \<notin> (\<nat> :: 'a :: {division_ring,ring_char_0} set)"
proof
@@ -349,7 +337,7 @@
also note Nats_subset_Ints
finally have "of_int m / of_int n \<in> (\<int> :: 'a set)" .
moreover have "of_int m / of_int n \<notin> (\<int> :: 'a set)"
- using assms by (intro fraction_not_in_ints)
+ using assms by (intro fraction_not_in_Ints)
ultimately show False by contradiction
qed
@@ -369,7 +357,7 @@
\<longleftrightarrow> (numeral b :: int) dvd numeral a" (is "?L=?R")
proof
show "?L \<Longrightarrow> ?R"
- by (metis fraction_not_in_ints of_int_numeral zero_neq_numeral)
+ by (metis fraction_not_in_Ints of_int_numeral zero_neq_numeral)
assume ?R
then obtain k::int where "numeral a = numeral b * (of_int k :: 'a)"
unfolding dvd_def by (metis of_int_mult of_int_numeral)