src/HOL/Library/Code_Nat.thy
changeset 50023 28f3263d4d1b
parent 50022 286dfcab9833
child 50024 b7265db3a1dc
--- a/src/HOL/Library/Code_Nat.thy	Wed Nov 07 20:48:04 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,258 +0,0 @@
-(*  Title:      HOL/Library/Code_Nat.thy
-    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
-*)
-
-header {* Implementation of natural numbers as binary numerals *}
-
-theory Code_Nat
-imports Main
-begin
-
-text {*
-  When generating code for functions on natural numbers, the
-  canonical representation using @{term "0::nat"} and
-  @{term Suc} is unsuitable for computations involving large
-  numbers.  This theory refines the representation of
-  natural numbers for code generation to use binary
-  numerals, which do not grow linear in size but logarithmic.
-*}
-
-subsection {* Representation *}
-
-lemma [code_abbrev]:
-  "nat_of_num = numeral"
-  by (fact nat_of_num_numeral)
-
-code_datatype "0::nat" nat_of_num
-
-lemma [code]:
-  "num_of_nat 0 = Num.One"
-  "num_of_nat (nat_of_num k) = k"
-  by (simp_all add: nat_of_num_inverse)
-
-lemma [code]:
-  "(1\<Colon>nat) = Numeral1"
-  by simp
-
-lemma [code_abbrev]: "Numeral1 = (1\<Colon>nat)"
-  by simp
-
-lemma [code]:
-  "Suc n = n + 1"
-  by simp
-
-
-subsection {* Basic arithmetic *}
-
-lemma [code, code del]:
-  "(plus :: nat \<Rightarrow> _) = plus" ..
-
-lemma plus_nat_code [code]:
-  "nat_of_num k + nat_of_num l = nat_of_num (k + l)"
-  "m + 0 = (m::nat)"
-  "0 + n = (n::nat)"
-  by (simp_all add: nat_of_num_numeral)
-
-text {* Bounded subtraction needs some auxiliary *}
-
-definition dup :: "nat \<Rightarrow> nat" where
-  "dup n = n + n"
-
-lemma dup_code [code]:
-  "dup 0 = 0"
-  "dup (nat_of_num k) = nat_of_num (Num.Bit0 k)"
-  unfolding Num_def by (simp_all add: dup_def numeral_Bit0)
-
-definition sub :: "num \<Rightarrow> num \<Rightarrow> nat option" where
-  "sub k l = (if k \<ge> l then Some (numeral k - numeral l) else None)"
-
-lemma sub_code [code]:
-  "sub Num.One Num.One = Some 0"
-  "sub (Num.Bit0 m) Num.One = Some (nat_of_num (Num.BitM m))"
-  "sub (Num.Bit1 m) Num.One = Some (nat_of_num (Num.Bit0 m))"
-  "sub Num.One (Num.Bit0 n) = None"
-  "sub Num.One (Num.Bit1 n) = None"
-  "sub (Num.Bit0 m) (Num.Bit0 n) = Option.map dup (sub m n)"
-  "sub (Num.Bit1 m) (Num.Bit1 n) = Option.map dup (sub m n)"
-  "sub (Num.Bit1 m) (Num.Bit0 n) = Option.map (\<lambda>q. dup q + 1) (sub m n)"
-  "sub (Num.Bit0 m) (Num.Bit1 n) = (case sub m n of None \<Rightarrow> None
-     | Some q \<Rightarrow> if q = 0 then None else Some (dup q - 1))"
-  apply (auto simp add: nat_of_num_numeral
-    Num.dbl_def Num.dbl_inc_def Num.dbl_dec_def
-    Let_def le_imp_diff_is_add BitM_plus_one sub_def dup_def)
-  apply (simp_all add: sub_non_positive)
-  apply (simp_all add: sub_non_negative [symmetric, where ?'a = int])
-  done
-
-lemma [code, code del]:
-  "(minus :: nat \<Rightarrow> _) = minus" ..
-
-lemma minus_nat_code [code]:
-  "nat_of_num k - nat_of_num l = (case sub k l of None \<Rightarrow> 0 | Some j \<Rightarrow> j)"
-  "m - 0 = (m::nat)"
-  "0 - n = (0::nat)"
-  by (simp_all add: nat_of_num_numeral sub_non_positive sub_def)
-
-lemma [code, code del]:
-  "(times :: nat \<Rightarrow> _) = times" ..
-
-lemma times_nat_code [code]:
-  "nat_of_num k * nat_of_num l = nat_of_num (k * l)"
-  "m * 0 = (0::nat)"
-  "0 * n = (0::nat)"
-  by (simp_all add: nat_of_num_numeral)
-
-lemma [code, code del]:
-  "(HOL.equal :: nat \<Rightarrow> _) = HOL.equal" ..
-
-lemma equal_nat_code [code]:
-  "HOL.equal 0 (0::nat) \<longleftrightarrow> True"
-  "HOL.equal 0 (nat_of_num l) \<longleftrightarrow> False"
-  "HOL.equal (nat_of_num k) 0 \<longleftrightarrow> False"
-  "HOL.equal (nat_of_num k) (nat_of_num l) \<longleftrightarrow> HOL.equal k l"
-  by (simp_all add: nat_of_num_numeral equal)
-
-lemma equal_nat_refl [code nbe]:
-  "HOL.equal (n::nat) n \<longleftrightarrow> True"
-  by (rule equal_refl)
-
-lemma [code, code del]:
-  "(less_eq :: nat \<Rightarrow> _) = less_eq" ..
-
-lemma less_eq_nat_code [code]:
-  "0 \<le> (n::nat) \<longleftrightarrow> True"
-  "nat_of_num k \<le> 0 \<longleftrightarrow> False"
-  "nat_of_num k \<le> nat_of_num l \<longleftrightarrow> k \<le> l"
-  by (simp_all add: nat_of_num_numeral)
-
-lemma [code, code del]:
-  "(less :: nat \<Rightarrow> _) = less" ..
-
-lemma less_nat_code [code]:
-  "(m::nat) < 0 \<longleftrightarrow> False"
-  "0 < nat_of_num l \<longleftrightarrow> True"
-  "nat_of_num k < nat_of_num l \<longleftrightarrow> k < l"
-  by (simp_all add: nat_of_num_numeral)
-
-
-subsection {* Conversions *}
-
-lemma [code, code del]:
-  "of_nat = of_nat" ..
-
-lemma of_nat_code [code]:
-  "of_nat 0 = 0"
-  "of_nat (nat_of_num k) = numeral k"
-  by (simp_all add: nat_of_num_numeral)
-
-
-subsection {* Case analysis *}
-
-text {*
-  Case analysis on natural numbers is rephrased using a conditional
-  expression:
-*}
-
-lemma [code, code_unfold]:
-  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
-  by (auto simp add: fun_eq_iff dest!: gr0_implies_Suc)
-
-
-subsection {* Preprocessors *}
-
-text {*
-  The term @{term "Suc n"} is no longer a valid pattern.
-  Therefore, all occurrences of this term in a position
-  where a pattern is expected (i.e.~on the left-hand side of a recursion
-  equation) must be eliminated.
-  This can be accomplished by applying the following transformation rules:
-*}
-
-lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
-  f n \<equiv> if n = 0 then g else h (n - 1)"
-  by (rule eq_reflection) (cases n, simp_all)
-
-text {*
-  The rules above are built into a preprocessor that is plugged into
-  the code generator. Since the preprocessor for introduction rules
-  does not know anything about modes, some of the modes that worked
-  for the canonical representation of natural numbers may no longer work.
-*}
-
-(*<*)
-setup {*
-let
-
-fun remove_suc thy thms =
-  let
-    val vname = singleton (Name.variant_list (map fst
-      (fold (Term.add_var_names o Thm.full_prop_of) thms []))) "n";
-    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
-    fun lhs_of th = snd (Thm.dest_comb
-      (fst (Thm.dest_comb (cprop_of th))));
-    fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
-    fun find_vars ct = (case term_of ct of
-        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
-      | _ $ _ =>
-        let val (ct1, ct2) = Thm.dest_comb ct
-        in 
-          map (apfst (fn ct => Thm.apply ct ct2)) (find_vars ct1) @
-          map (apfst (Thm.apply ct1)) (find_vars ct2)
-        end
-      | _ => []);
-    val eqs = maps
-      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
-    fun mk_thms (th, (ct, cv')) =
-      let
-        val th' =
-          Thm.implies_elim
-           (Conv.fconv_rule (Thm.beta_conversion true)
-             (Drule.instantiate'
-               [SOME (ctyp_of_term ct)] [SOME (Thm.lambda cv ct),
-                 SOME (Thm.lambda cv' (rhs_of th)), NONE, SOME cv']
-               @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
-      in
-        case map_filter (fn th'' =>
-            SOME (th'', singleton
-              (Variable.trade (K (fn [th'''] => [th''' RS th']))
-                (Variable.global_thm_context th'')) th'')
-          handle THM _ => NONE) thms of
-            [] => NONE
-          | thps =>
-              let val (ths1, ths2) = split_list thps
-              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
-      end
-  in get_first mk_thms eqs end;
-
-fun eqn_suc_base_preproc thy thms =
-  let
-    val dest = fst o Logic.dest_equals o prop_of;
-    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
-  in
-    if forall (can dest) thms andalso exists (contains_suc o dest) thms
-      then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
-       else NONE
-  end;
-
-val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;
-
-in
-
-  Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
-
-end;
-*}
-(*>*)
-
-code_modulename SML
-  Code_Nat Arith
-
-code_modulename OCaml
-  Code_Nat Arith
-
-code_modulename Haskell
-  Code_Nat Arith
-
-hide_const (open) dup sub
-
-end