--- a/src/HOL/ex/Code_Nat_examples.thy Wed Nov 07 20:48:04 2012 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,57 +0,0 @@
-(* Title: HOL/ex/Code_Nat_examples.thy
- Author: Florian Haftmann, TU Muenchen
-*)
-
-header {* Simple examples for Code\_Numeral\_Nat theory. *}
-
-theory Code_Nat_examples
-imports Complex_Main "~~/src/HOL/Library/Efficient_Nat"
-begin
-
-fun to_n :: "nat \<Rightarrow> nat list"
-where
- "to_n 0 = []"
-| "to_n (Suc 0) = []"
-| "to_n (Suc (Suc 0)) = []"
-| "to_n (Suc n) = n # to_n n"
-
-definition naive_prime :: "nat \<Rightarrow> bool"
-where
- "naive_prime n \<longleftrightarrow> n \<ge> 2 \<and> filter (\<lambda>m. n mod m = 0) (to_n n) = []"
-
-primrec fac :: "nat \<Rightarrow> nat"
-where
- "fac 0 = 1"
-| "fac (Suc n) = Suc n * fac n"
-
-primrec harmonic :: "nat \<Rightarrow> rat"
-where
- "harmonic 0 = 0"
-| "harmonic (Suc n) = 1 / of_nat (Suc n) + harmonic n"
-
-lemma "harmonic 200 \<ge> 5"
- by eval
-
-lemma "(let (q, r) = quotient_of (harmonic 8) in q div r) \<ge> 2"
- by normalization
-
-lemma "naive_prime 89"
- by eval
-
-lemma "naive_prime 89"
- by normalization
-
-lemma "\<not> naive_prime 87"
- by eval
-
-lemma "\<not> naive_prime 87"
- by normalization
-
-lemma "fac 10 > 3000000"
- by eval
-
-lemma "fac 10 > 3000000"
- by normalization
-
-end
-