src/HOL/BNF_Cardinal_Order_Relation.thy
changeset 76951 293caf3dbecd
parent 75624 22d1c5f2b9f4
child 77140 9a60c1759543
--- a/src/HOL/BNF_Cardinal_Order_Relation.thy	Fri Jan 13 22:47:40 2023 +0000
+++ b/src/HOL/BNF_Cardinal_Order_Relation.thy	Sat Jan 14 16:53:54 2023 +0000
@@ -9,7 +9,7 @@
 section \<open>Cardinal-Order Relations as Needed by Bounded Natural Functors\<close>
 
 theory BNF_Cardinal_Order_Relation
-imports Zorn BNF_Wellorder_Constructions
+  imports Zorn BNF_Wellorder_Constructions
 begin
 
 text\<open>In this section, we define cardinal-order relations to be minim well-orders
@@ -42,20 +42,20 @@
 strict order-embedding relation, \<open><o\<close>), among all the well-orders on its field.\<close>
 
 definition card_order_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
-where
-"card_order_on A r \<equiv> well_order_on A r \<and> (\<forall>r'. well_order_on A r' \<longrightarrow> r \<le>o r')"
+  where
+    "card_order_on A r \<equiv> well_order_on A r \<and> (\<forall>r'. well_order_on A r' \<longrightarrow> r \<le>o r')"
 
 abbreviation "Card_order r \<equiv> card_order_on (Field r) r"
 abbreviation "card_order r \<equiv> card_order_on UNIV r"
 
 lemma card_order_on_well_order_on:
-assumes "card_order_on A r"
-shows "well_order_on A r"
-using assms unfolding card_order_on_def by simp
+  assumes "card_order_on A r"
+  shows "well_order_on A r"
+  using assms unfolding card_order_on_def by simp
 
 lemma card_order_on_Card_order:
-"card_order_on A r \<Longrightarrow> A = Field r \<and> Card_order r"
-unfolding card_order_on_def using well_order_on_Field by blast
+  "card_order_on A r \<Longrightarrow> A = Field r \<and> Card_order r"
+  unfolding card_order_on_def using well_order_on_Field by blast
 
 text\<open>The existence of a cardinal relation on any given set (which will mean
 that any set has a cardinal) follows from two facts:
@@ -68,48 +68,47 @@
 \<close>
 
 theorem card_order_on: "\<exists>r. card_order_on A r"
-proof-
-  obtain R where R_def: "R = {r. well_order_on A r}" by blast
-  have 1: "R \<noteq> {} \<and> (\<forall>r \<in> R. Well_order r)"
-  using well_order_on[of A] R_def well_order_on_Well_order by blast
-  hence "\<exists>r \<in> R. \<forall>r' \<in> R. r \<le>o r'"
-  using  exists_minim_Well_order[of R] by auto
-  thus ?thesis using R_def unfolding card_order_on_def by auto
+proof -
+  define R where "R \<equiv> {r. well_order_on A r}" 
+  have "R \<noteq> {} \<and> (\<forall>r \<in> R. Well_order r)"
+    using well_order_on[of A] R_def well_order_on_Well_order by blast
+  with exists_minim_Well_order[of R] show ?thesis  
+    by (auto simp: R_def card_order_on_def)
 qed
 
 lemma card_order_on_ordIso:
-assumes CO: "card_order_on A r" and CO': "card_order_on A r'"
-shows "r =o r'"
-using assms unfolding card_order_on_def
-using ordIso_iff_ordLeq by blast
+  assumes CO: "card_order_on A r" and CO': "card_order_on A r'"
+  shows "r =o r'"
+  using assms unfolding card_order_on_def
+  using ordIso_iff_ordLeq by blast
 
 lemma Card_order_ordIso:
-assumes CO: "Card_order r" and ISO: "r' =o r"
-shows "Card_order r'"
-using ISO unfolding ordIso_def
+  assumes CO: "Card_order r" and ISO: "r' =o r"
+  shows "Card_order r'"
+  using ISO unfolding ordIso_def
 proof(unfold card_order_on_def, auto)
   fix p' assume "well_order_on (Field r') p'"
   hence 0: "Well_order p' \<and> Field p' = Field r'"
-  using well_order_on_Well_order by blast
+    using well_order_on_Well_order by blast
   obtain f where 1: "iso r' r f" and 2: "Well_order r \<and> Well_order r'"
-  using ISO unfolding ordIso_def by auto
+    using ISO unfolding ordIso_def by auto
   hence 3: "inj_on f (Field r') \<and> f ` (Field r') = Field r"
-  by (auto simp add: iso_iff embed_inj_on)
+    by (auto simp add: iso_iff embed_inj_on)
   let ?p = "dir_image p' f"
   have 4: "p' =o ?p \<and> Well_order ?p"
-  using 0 2 3 by (auto simp add: dir_image_ordIso Well_order_dir_image)
-  moreover have "Field ?p =  Field r"
-  using 0 3 by (auto simp add: dir_image_Field)
+    using 0 2 3 by (auto simp add: dir_image_ordIso Well_order_dir_image)
+  moreover have "Field ?p = Field r"
+    using 0 3 by (auto simp add: dir_image_Field)
   ultimately have "well_order_on (Field r) ?p" by auto
   hence "r \<le>o ?p" using CO unfolding card_order_on_def by auto
   thus "r' \<le>o p'"
-  using ISO 4 ordLeq_ordIso_trans ordIso_ordLeq_trans ordIso_symmetric by blast
+    using ISO 4 ordLeq_ordIso_trans ordIso_ordLeq_trans ordIso_symmetric by blast
 qed
 
 lemma Card_order_ordIso2:
-assumes CO: "Card_order r" and ISO: "r =o r'"
-shows "Card_order r'"
-using assms Card_order_ordIso ordIso_symmetric by blast
+  assumes CO: "Card_order r" and ISO: "r =o r'"
+  shows "Card_order r'"
+  using assms Card_order_ordIso ordIso_symmetric by blast
 
 
 subsection \<open>Cardinal of a set\<close>
@@ -119,220 +118,213 @@
 that order isomorphism shall be the true identity of cardinals.\<close>
 
 definition card_of :: "'a set \<Rightarrow> 'a rel" ("|_|" )
-where "card_of A = (SOME r. card_order_on A r)"
+  where "card_of A = (SOME r. card_order_on A r)"
 
 lemma card_of_card_order_on: "card_order_on A |A|"
-unfolding card_of_def by (auto simp add: card_order_on someI_ex)
+  unfolding card_of_def by (auto simp add: card_order_on someI_ex)
 
 lemma card_of_well_order_on: "well_order_on A |A|"
-using card_of_card_order_on card_order_on_def by blast
+  using card_of_card_order_on card_order_on_def by blast
 
 lemma Field_card_of: "Field |A| = A"
-using card_of_card_order_on[of A] unfolding card_order_on_def
-using well_order_on_Field by blast
+  using card_of_card_order_on[of A] unfolding card_order_on_def
+  using well_order_on_Field by blast
 
 lemma card_of_Card_order: "Card_order |A|"
-by (simp only: card_of_card_order_on Field_card_of)
+  by (simp only: card_of_card_order_on Field_card_of)
 
 corollary ordIso_card_of_imp_Card_order:
-"r =o |A| \<Longrightarrow> Card_order r"
-using card_of_Card_order Card_order_ordIso by blast
+  "r =o |A| \<Longrightarrow> Card_order r"
+  using card_of_Card_order Card_order_ordIso by blast
 
 lemma card_of_Well_order: "Well_order |A|"
-using card_of_Card_order unfolding card_order_on_def by auto
+  using card_of_Card_order unfolding card_order_on_def by auto
 
 lemma card_of_refl: "|A| =o |A|"
-using card_of_Well_order ordIso_reflexive by blast
+  using card_of_Well_order ordIso_reflexive by blast
 
 lemma card_of_least: "well_order_on A r \<Longrightarrow> |A| \<le>o r"
-using card_of_card_order_on unfolding card_order_on_def by blast
+  using card_of_card_order_on unfolding card_order_on_def by blast
 
 lemma card_of_ordIso:
-"(\<exists>f. bij_betw f A B) = ( |A| =o |B| )"
+  "(\<exists>f. bij_betw f A B) = ( |A| =o |B| )"
 proof(auto)
   fix f assume *: "bij_betw f A B"
   then obtain r where "well_order_on B r \<and> |A| =o r"
-  using Well_order_iso_copy card_of_well_order_on by blast
+    using Well_order_iso_copy card_of_well_order_on by blast
   hence "|B| \<le>o |A|" using card_of_least
-  ordLeq_ordIso_trans ordIso_symmetric by blast
+      ordLeq_ordIso_trans ordIso_symmetric by blast
   moreover
   {let ?g = "inv_into A f"
-   have "bij_betw ?g B A" using * bij_betw_inv_into by blast
-   then obtain r where "well_order_on A r \<and> |B| =o r"
-   using Well_order_iso_copy card_of_well_order_on by blast
-   hence "|A| \<le>o |B|" using card_of_least
-   ordLeq_ordIso_trans ordIso_symmetric by blast
+    have "bij_betw ?g B A" using * bij_betw_inv_into by blast
+    then obtain r where "well_order_on A r \<and> |B| =o r"
+      using Well_order_iso_copy card_of_well_order_on by blast
+    hence "|A| \<le>o |B|" 
+      using card_of_least ordLeq_ordIso_trans ordIso_symmetric by blast
   }
   ultimately show "|A| =o |B|" using ordIso_iff_ordLeq by blast
 next
   assume "|A| =o |B|"
   then obtain f where "iso ( |A| ) ( |B| ) f"
-  unfolding ordIso_def by auto
+    unfolding ordIso_def by auto
   hence "bij_betw f A B" unfolding iso_def Field_card_of by simp
   thus "\<exists>f. bij_betw f A B" by auto
 qed
 
 lemma card_of_ordLeq:
-"(\<exists>f. inj_on f A \<and> f ` A \<le> B) = ( |A| \<le>o |B| )"
+  "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = ( |A| \<le>o |B| )"
 proof(auto)
   fix f assume *: "inj_on f A" and **: "f ` A \<le> B"
   {assume "|B| <o |A|"
-   hence "|B| \<le>o |A|" using ordLeq_iff_ordLess_or_ordIso by blast
-   then obtain g where "embed ( |B| ) ( |A| ) g"
-   unfolding ordLeq_def by auto
-   hence 1: "inj_on g B \<and> g ` B \<le> A" using embed_inj_on[of "|B|" "|A|" "g"]
-   card_of_Well_order[of "B"] Field_card_of[of "B"] Field_card_of[of "A"]
-   embed_Field[of "|B|" "|A|" g] by auto
-   obtain h where "bij_betw h A B"
-   using * ** 1 Schroeder_Bernstein[of f] by fastforce
-   hence "|A| =o |B|" using card_of_ordIso by blast
-   hence "|A| \<le>o |B|" using ordIso_iff_ordLeq by auto
+    hence "|B| \<le>o |A|" using ordLeq_iff_ordLess_or_ordIso by blast
+    then obtain g where "embed ( |B| ) ( |A| ) g"
+      unfolding ordLeq_def by auto
+    hence 1: "inj_on g B \<and> g ` B \<le> A" using embed_inj_on[of "|B|" "|A|" "g"]
+        card_of_Well_order[of "B"] Field_card_of[of "B"] Field_card_of[of "A"]
+        embed_Field[of "|B|" "|A|" g] by auto
+    obtain h where "bij_betw h A B"
+      using * ** 1 Schroeder_Bernstein[of f] by fastforce
+    hence "|A| \<le>o |B|" using card_of_ordIso ordIso_iff_ordLeq by auto
   }
   thus "|A| \<le>o |B|" using ordLess_or_ordLeq[of "|B|" "|A|"]
-  by (auto simp: card_of_Well_order)
+    by (auto simp: card_of_Well_order)
 next
   assume *: "|A| \<le>o |B|"
-  obtain f where "embed ( |A| ) ( |B| ) f"
-  using * unfolding ordLeq_def by auto
-  hence "inj_on f A \<and> f ` A \<le> B" using embed_inj_on[of "|A|" "|B|" f]
-  card_of_Well_order[of "A"] Field_card_of[of "A"] Field_card_of[of "B"]
-  embed_Field[of "|A|" "|B|" f] by auto
+  obtain f where "embed |A| |B| f"
+    using * unfolding ordLeq_def by auto
+  hence "inj_on f A \<and> f ` A \<le> B" 
+    using embed_inj_on[of "|A|" "|B|"] card_of_Well_order embed_Field[of "|A|" "|B|"]
+    by (auto simp: Field_card_of)
   thus "\<exists>f. inj_on f A \<and> f ` A \<le> B" by auto
 qed
 
 lemma card_of_ordLeq2:
-"A \<noteq> {} \<Longrightarrow> (\<exists>g. g ` B = A) = ( |A| \<le>o |B| )"
-using card_of_ordLeq[of A B] inj_on_iff_surj[of A B] by auto
+  "A \<noteq> {} \<Longrightarrow> (\<exists>g. g ` B = A) = ( |A| \<le>o |B| )"
+  using card_of_ordLeq[of A B] inj_on_iff_surj[of A B] by auto
 
 lemma card_of_ordLess:
-"(\<not>(\<exists>f. inj_on f A \<and> f ` A \<le> B)) = ( |B| <o |A| )"
-proof-
+  "(\<not>(\<exists>f. inj_on f A \<and> f ` A \<le> B)) = ( |B| <o |A| )"
+proof -
   have "(\<not>(\<exists>f. inj_on f A \<and> f ` A \<le> B)) = (\<not> |A| \<le>o |B| )"
-  using card_of_ordLeq by blast
+    using card_of_ordLeq by blast
   also have "\<dots> = ( |B| <o |A| )"
-  using card_of_Well_order[of A] card_of_Well_order[of B]
-        not_ordLeq_iff_ordLess by blast
+    using  not_ordLeq_iff_ordLess by (auto intro: card_of_Well_order)
   finally show ?thesis .
 qed
 
 lemma card_of_ordLess2:
-"B \<noteq> {} \<Longrightarrow> (\<not>(\<exists>f. f ` A = B)) = ( |A| <o |B| )"
-using card_of_ordLess[of B A] inj_on_iff_surj[of B A] by auto
+  "B \<noteq> {} \<Longrightarrow> (\<not>(\<exists>f. f ` A = B)) = ( |A| <o |B| )"
+  using card_of_ordLess[of B A] inj_on_iff_surj[of B A] by auto
 
 lemma card_of_ordIsoI:
-assumes "bij_betw f A B"
-shows "|A| =o |B|"
-using assms unfolding card_of_ordIso[symmetric] by auto
+  assumes "bij_betw f A B"
+  shows "|A| =o |B|"
+  using assms unfolding card_of_ordIso[symmetric] by auto
 
 lemma card_of_ordLeqI:
-assumes "inj_on f A" and "\<And> a. a \<in> A \<Longrightarrow> f a \<in> B"
-shows "|A| \<le>o |B|"
-using assms unfolding card_of_ordLeq[symmetric] by auto
+  assumes "inj_on f A" and "\<And> a. a \<in> A \<Longrightarrow> f a \<in> B"
+  shows "|A| \<le>o |B|"
+  using assms unfolding card_of_ordLeq[symmetric] by auto
 
 lemma card_of_unique:
-"card_order_on A r \<Longrightarrow> r =o |A|"
-by (simp only: card_order_on_ordIso card_of_card_order_on)
+  "card_order_on A r \<Longrightarrow> r =o |A|"
+  by (simp only: card_order_on_ordIso card_of_card_order_on)
 
 lemma card_of_mono1:
-"A \<le> B \<Longrightarrow> |A| \<le>o |B|"
-using inj_on_id[of A] card_of_ordLeq[of A B] by fastforce
+  "A \<le> B \<Longrightarrow> |A| \<le>o |B|"
+  using inj_on_id[of A] card_of_ordLeq[of A B] by fastforce
 
 lemma card_of_mono2:
-assumes "r \<le>o r'"
-shows "|Field r| \<le>o |Field r'|"
-proof-
+  assumes "r \<le>o r'"
+  shows "|Field r| \<le>o |Field r'|"
+proof -
   obtain f where
-  1: "well_order_on (Field r) r \<and> well_order_on (Field r) r \<and> embed r r' f"
-  using assms unfolding ordLeq_def
-  by (auto simp add: well_order_on_Well_order)
+    1: "well_order_on (Field r) r \<and> well_order_on (Field r) r \<and> embed r r' f"
+    using assms unfolding ordLeq_def
+    by (auto simp add: well_order_on_Well_order)
   hence "inj_on f (Field r) \<and> f ` (Field r) \<le> Field r'"
-  by (auto simp add: embed_inj_on embed_Field)
+    by (auto simp add: embed_inj_on embed_Field)
   thus "|Field r| \<le>o |Field r'|" using card_of_ordLeq by blast
 qed
 
 lemma card_of_cong: "r =o r' \<Longrightarrow> |Field r| =o |Field r'|"
-by (simp add: ordIso_iff_ordLeq card_of_mono2)
-
-lemma card_of_Field_ordLess: "Well_order r \<Longrightarrow> |Field r| \<le>o r"
-using card_of_least card_of_well_order_on well_order_on_Well_order by blast
+  by (simp add: ordIso_iff_ordLeq card_of_mono2)
 
 lemma card_of_Field_ordIso:
-assumes "Card_order r"
-shows "|Field r| =o r"
-proof-
+  assumes "Card_order r"
+  shows "|Field r| =o r"
+proof -
   have "card_order_on (Field r) r"
-  using assms card_order_on_Card_order by blast
+    using assms card_order_on_Card_order by blast
   moreover have "card_order_on (Field r) |Field r|"
-  using card_of_card_order_on by blast
+    using card_of_card_order_on by blast
   ultimately show ?thesis using card_order_on_ordIso by blast
 qed
 
 lemma Card_order_iff_ordIso_card_of:
-"Card_order r = (r =o |Field r| )"
-using ordIso_card_of_imp_Card_order card_of_Field_ordIso ordIso_symmetric by blast
+  "Card_order r = (r =o |Field r| )"
+  using ordIso_card_of_imp_Card_order card_of_Field_ordIso ordIso_symmetric by blast
 
 lemma Card_order_iff_ordLeq_card_of:
-"Card_order r = (r \<le>o |Field r| )"
-proof-
+  "Card_order r = (r \<le>o |Field r| )"
+proof -
   have "Card_order r = (r =o |Field r| )"
-  unfolding Card_order_iff_ordIso_card_of by simp
-  also have "... = (r \<le>o |Field r| \<and> |Field r| \<le>o r)"
-  unfolding ordIso_iff_ordLeq by simp
-  also have "... = (r \<le>o |Field r| )"
-  using card_of_Field_ordLess
-  by (auto simp: card_of_Field_ordLess ordLeq_Well_order_simp)
+    unfolding Card_order_iff_ordIso_card_of by simp
+  also have "\<dots> = (r \<le>o |Field r| \<and> |Field r| \<le>o r)"
+    unfolding ordIso_iff_ordLeq by simp
+  also have "\<dots> = (r \<le>o |Field r| )"
+    using card_of_least
+    by (auto simp: card_of_least ordLeq_Well_order_simp)
   finally show ?thesis .
 qed
 
 lemma Card_order_iff_Restr_underS:
-assumes "Well_order r"
-shows "Card_order r = (\<forall>a \<in> Field r. Restr r (underS r a) <o |Field r| )"
-using assms unfolding Card_order_iff_ordLeq_card_of
-using ordLeq_iff_ordLess_Restr card_of_Well_order by blast
+  assumes "Well_order r"
+  shows "Card_order r = (\<forall>a \<in> Field r. Restr r (underS r a) <o |Field r| )"
+  using assms ordLeq_iff_ordLess_Restr card_of_Well_order
+  unfolding Card_order_iff_ordLeq_card_of  by blast
 
 lemma card_of_underS:
-assumes r: "Card_order r" and a: "a \<in> Field r"
-shows "|underS r a| <o r"
-proof-
+  assumes r: "Card_order r" and a: "a \<in> Field r"
+  shows "|underS r a| <o r"
+proof -
   let ?A = "underS r a"  let ?r' = "Restr r ?A"
   have 1: "Well_order r"
-  using r unfolding card_order_on_def by simp
+    using r unfolding card_order_on_def by simp
   have "Well_order ?r'" using 1 Well_order_Restr by auto
-  moreover have "card_order_on (Field ?r') |Field ?r'|"
-  using card_of_card_order_on .
-  ultimately have "|Field ?r'| \<le>o ?r'"
-  unfolding card_order_on_def by simp
+  with card_of_card_order_on have "|Field ?r'| \<le>o ?r'"
+    unfolding card_order_on_def by auto
   moreover have "Field ?r' = ?A"
-  using 1 wo_rel.underS_ofilter Field_Restr_ofilter
-  unfolding wo_rel_def by fastforce
+    using 1 wo_rel.underS_ofilter Field_Restr_ofilter
+    unfolding wo_rel_def by fastforce
   ultimately have "|?A| \<le>o ?r'" by simp
   also have "?r' <o |Field r|"
-  using 1 a r Card_order_iff_Restr_underS by blast
+    using 1 a r Card_order_iff_Restr_underS by blast
   also have "|Field r| =o r"
-  using r ordIso_symmetric unfolding Card_order_iff_ordIso_card_of by auto
+    using r ordIso_symmetric unfolding Card_order_iff_ordIso_card_of by auto
   finally show ?thesis .
 qed
 
 lemma ordLess_Field:
-assumes "r <o r'"
-shows "|Field r| <o r'"
-proof-
+  assumes "r <o r'"
+  shows "|Field r| <o r'"
+proof -
   have "well_order_on (Field r) r" using assms unfolding ordLess_def
-  by (auto simp add: well_order_on_Well_order)
+    by (auto simp add: well_order_on_Well_order)
   hence "|Field r| \<le>o r" using card_of_least by blast
   thus ?thesis using assms ordLeq_ordLess_trans by blast
 qed
 
 lemma internalize_card_of_ordLeq:
-"( |A| \<le>o r) = (\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r)"
+  "( |A| \<le>o r) = (\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r)"
 proof
   assume "|A| \<le>o r"
   then obtain p where 1: "Field p \<le> Field r \<and> |A| =o p \<and> p \<le>o r"
-  using internalize_ordLeq[of "|A|" r] by blast
+    using internalize_ordLeq[of "|A|" r] by blast
   hence "Card_order p" using card_of_Card_order Card_order_ordIso2 by blast
   hence "|Field p| =o p" using card_of_Field_ordIso by blast
   hence "|A| =o |Field p| \<and> |Field p| \<le>o r"
-  using 1 ordIso_equivalence ordIso_ordLeq_trans by blast
+    using 1 ordIso_equivalence ordIso_ordLeq_trans by blast
   thus "\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r" using 1 by blast
 next
   assume "\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r"
@@ -340,8 +332,8 @@
 qed
 
 lemma internalize_card_of_ordLeq2:
-"( |A| \<le>o |C| ) = (\<exists>B \<le> C. |A| =o |B| \<and> |B| \<le>o |C| )"
-using internalize_card_of_ordLeq[of "A" "|C|"] Field_card_of[of C] by auto
+  "( |A| \<le>o |C| ) = (\<exists>B \<le> C. |A| =o |B| \<and> |B| \<le>o |C| )"
+  using internalize_card_of_ordLeq[of "A" "|C|"] Field_card_of[of C] by auto
 
 
 subsection \<open>Cardinals versus set operations on arbitrary sets\<close>
@@ -353,123 +345,113 @@
 \<close>
 
 lemma card_of_empty: "|{}| \<le>o |A|"
-using card_of_ordLeq inj_on_id by blast
+  using card_of_ordLeq inj_on_id by blast
 
 lemma card_of_empty1:
-assumes "Well_order r \<or> Card_order r"
-shows "|{}| \<le>o r"
-proof-
+  assumes "Well_order r \<or> Card_order r"
+  shows "|{}| \<le>o r"
+proof -
   have "Well_order r" using assms unfolding card_order_on_def by auto
-  hence "|Field r| <=o r"
-  using assms card_of_Field_ordLess by blast
+  hence "|Field r| \<le>o r"
+    using assms card_of_least by blast
   moreover have "|{}| \<le>o |Field r|" by (simp add: card_of_empty)
   ultimately show ?thesis using ordLeq_transitive by blast
 qed
 
 corollary Card_order_empty:
-"Card_order r \<Longrightarrow> |{}| \<le>o r" by (simp add: card_of_empty1)
+  "Card_order r \<Longrightarrow> |{}| \<le>o r" by (simp add: card_of_empty1)
 
 lemma card_of_empty2:
-assumes LEQ: "|A| =o |{}|"
-shows "A = {}"
-using assms card_of_ordIso[of A] bij_betw_empty2 by blast
+  assumes "|A| =o |{}|"
+  shows "A = {}"
+  using assms card_of_ordIso[of A] bij_betw_empty2 by blast
 
 lemma card_of_empty3:
-assumes LEQ: "|A| \<le>o |{}|"
-shows "A = {}"
-using assms
-by (simp add: ordIso_iff_ordLeq card_of_empty1 card_of_empty2
-              ordLeq_Well_order_simp)
+  assumes "|A| \<le>o |{}|"
+  shows "A = {}"
+  using assms
+  by (simp add: ordIso_iff_ordLeq card_of_empty1 card_of_empty2
+      ordLeq_Well_order_simp)
 
 lemma card_of_empty_ordIso:
-"|{}::'a set| =o |{}::'b set|"
-using card_of_ordIso unfolding bij_betw_def inj_on_def by blast
+  "|{}::'a set| =o |{}::'b set|"
+  using card_of_ordIso unfolding bij_betw_def inj_on_def by blast
 
 lemma card_of_image:
-"|f ` A| <=o |A|"
-proof(cases "A = {}", simp add: card_of_empty)
-  assume "A \<noteq> {}"
+  "|f ` A| \<le>o |A|"
+proof(cases "A = {}")
+  case False
   hence "f ` A \<noteq> {}" by auto
-  thus "|f ` A| \<le>o |A|"
-  using card_of_ordLeq2[of "f ` A" A] by auto
-qed
+  thus ?thesis
+    using card_of_ordLeq2[of "f ` A" A] by auto
+qed (simp add: card_of_empty)
 
 lemma surj_imp_ordLeq:
-assumes "B \<subseteq> f ` A"
-shows "|B| \<le>o |A|"
-proof-
-  have "|B| <=o |f ` A|" using assms card_of_mono1 by auto
+  assumes "B \<subseteq> f ` A"
+  shows "|B| \<le>o |A|"
+proof -
+  have "|B| \<le>o |f ` A|" using assms card_of_mono1 by auto
   thus ?thesis using card_of_image ordLeq_transitive by blast
 qed
 
 lemma card_of_singl_ordLeq:
-assumes "A \<noteq> {}"
-shows "|{b}| \<le>o |A|"
-proof-
+  assumes "A \<noteq> {}"
+  shows "|{b}| \<le>o |A|"
+proof -
   obtain a where *: "a \<in> A" using assms by auto
   let ?h = "\<lambda> b'::'b. if b' = b then a else undefined"
   have "inj_on ?h {b} \<and> ?h ` {b} \<le> A"
-  using * unfolding inj_on_def by auto
+    using * unfolding inj_on_def by auto
   thus ?thesis unfolding card_of_ordLeq[symmetric] by (intro exI)
 qed
 
 corollary Card_order_singl_ordLeq:
-"\<lbrakk>Card_order r; Field r \<noteq> {}\<rbrakk> \<Longrightarrow> |{b}| \<le>o r"
-using card_of_singl_ordLeq[of "Field r" b]
-      card_of_Field_ordIso[of r] ordLeq_ordIso_trans by blast
+  "\<lbrakk>Card_order r; Field r \<noteq> {}\<rbrakk> \<Longrightarrow> |{b}| \<le>o r"
+  using card_of_singl_ordLeq[of "Field r" b]
+    card_of_Field_ordIso[of r] ordLeq_ordIso_trans by blast
 
 lemma card_of_Pow: "|A| <o |Pow A|"
-using card_of_ordLess2[of "Pow A" A]  Cantors_paradox[of A]
-      Pow_not_empty[of A] by auto
+  using card_of_ordLess2[of "Pow A" A]  Cantors_paradox[of A]
+    Pow_not_empty[of A] by auto
 
 corollary Card_order_Pow:
-"Card_order r \<Longrightarrow> r <o |Pow(Field r)|"
-using card_of_Pow card_of_Field_ordIso ordIso_ordLess_trans ordIso_symmetric by blast
+  "Card_order r \<Longrightarrow> r <o |Pow(Field r)|"
+  using card_of_Pow card_of_Field_ordIso ordIso_ordLess_trans ordIso_symmetric by blast
 
-lemma card_of_Plus1: "|A| \<le>o |A <+> B|"
-proof-
-  have "Inl ` A \<le> A <+> B" by auto
-  thus ?thesis using inj_Inl[of A] card_of_ordLeq by blast
-qed
+lemma card_of_Plus1: "|A| \<le>o |A <+> B|" and card_of_Plus2: "|B| \<le>o |A <+> B|"
+  using card_of_ordLeq by force+
 
 corollary Card_order_Plus1:
-"Card_order r \<Longrightarrow> r \<le>o |(Field r) <+> B|"
-using card_of_Plus1 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
-
-lemma card_of_Plus2: "|B| \<le>o |A <+> B|"
-proof-
-  have "Inr ` B \<le> A <+> B" by auto
-  thus ?thesis using inj_Inr[of B] card_of_ordLeq by blast
-qed
+  "Card_order r \<Longrightarrow> r \<le>o |(Field r) <+> B|"
+  using card_of_Plus1 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
 
 corollary Card_order_Plus2:
-"Card_order r \<Longrightarrow> r \<le>o |A <+> (Field r)|"
-using card_of_Plus2 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
+  "Card_order r \<Longrightarrow> r \<le>o |A <+> (Field r)|"
+  using card_of_Plus2 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
 
 lemma card_of_Plus_empty1: "|A| =o |A <+> {}|"
-proof-
+proof -
   have "bij_betw Inl A (A <+> {})" unfolding bij_betw_def inj_on_def by auto
   thus ?thesis using card_of_ordIso by auto
 qed
 
 lemma card_of_Plus_empty2: "|A| =o |{} <+> A|"
-proof-
+proof -
   have "bij_betw Inr A ({} <+> A)" unfolding bij_betw_def inj_on_def by auto
   thus ?thesis using card_of_ordIso by auto
 qed
 
 lemma card_of_Plus_commute: "|A <+> B| =o |B <+> A|"
-proof-
-  let ?f = "\<lambda>(c::'a + 'b). case c of Inl a \<Rightarrow> Inr a
-                                   | Inr b \<Rightarrow> Inl b"
+proof -
+  let ?f = "\<lambda>c. case c of Inl a \<Rightarrow> Inr a | Inr b \<Rightarrow> Inl b"
   have "bij_betw ?f (A <+> B) (B <+> A)"
-  unfolding bij_betw_def inj_on_def by force
+    unfolding bij_betw_def inj_on_def by force
   thus ?thesis using card_of_ordIso by blast
 qed
 
 lemma card_of_Plus_assoc:
-fixes A :: "'a set" and B :: "'b set" and C :: "'c set"
-shows "|(A <+> B) <+> C| =o |A <+> B <+> C|"
+  fixes A :: "'a set" and B :: "'b set" and C :: "'c set"
+  shows "|(A <+> B) <+> C| =o |A <+> B <+> C|"
 proof -
   define f :: "('a + 'b) + 'c \<Rightarrow> 'a + 'b + 'c"
     where [abs_def]: "f k =
@@ -487,21 +469,11 @@
     proof(cases x)
       case (Inl a)
       hence "a \<in> A" "x = f (Inl (Inl a))"
-      using x unfolding f_def by auto
+        using x unfolding f_def by auto
       thus ?thesis by auto
     next
-      case (Inr bc) note 1 = Inr show ?thesis
-      proof(cases bc)
-        case (Inl b)
-        hence "b \<in> B" "x = f (Inl (Inr b))"
-        using x 1 unfolding f_def by auto
-        thus ?thesis by auto
-      next
-        case (Inr c)
-        hence "c \<in> C" "x = f (Inr c)"
-        using x 1 unfolding f_def by auto
-        thus ?thesis by auto
-      qed
+      case (Inr bc) with x show ?thesis 
+        by (cases bc) (force simp: f_def)+
     qed
   qed
   hence "bij_betw f ((A <+> B) <+> C) (A <+> B <+> C)"
@@ -510,159 +482,134 @@
 qed
 
 lemma card_of_Plus_mono1:
-assumes "|A| \<le>o |B|"
-shows "|A <+> C| \<le>o |B <+> C|"
-proof-
-  obtain f where 1: "inj_on f A \<and> f ` A \<le> B"
-  using assms card_of_ordLeq[of A] by fastforce
-  obtain g where g_def:
-  "g = (\<lambda>d. case d of Inl a \<Rightarrow> Inl(f a) | Inr (c::'c) \<Rightarrow> Inr c)" by blast
+  assumes "|A| \<le>o |B|"
+  shows "|A <+> C| \<le>o |B <+> C|"
+proof -
+  obtain f where f: "inj_on f A \<and> f ` A \<le> B"
+    using assms card_of_ordLeq[of A] by fastforce
+  define g where "g \<equiv> \<lambda>d. case d of Inl a \<Rightarrow> Inl(f a) | Inr (c::'c) \<Rightarrow> Inr c" 
   have "inj_on g (A <+> C) \<and> g ` (A <+> C) \<le> (B <+> C)"
-  proof-
-    {fix d1 and d2 assume "d1 \<in> A <+> C \<and> d2 \<in> A <+> C" and
-                          "g d1 = g d2"
-     hence "d1 = d2" using 1 unfolding inj_on_def g_def by force
-    }
-    moreover
-    {fix d assume "d \<in> A <+> C"
-     hence "g d \<in> B <+> C"  using 1
-     by(cases d) (auto simp add: g_def)
-    }
-    ultimately show ?thesis unfolding inj_on_def by auto
-  qed
+    using f unfolding inj_on_def g_def by force
   thus ?thesis using card_of_ordLeq by blast
 qed
 
 corollary ordLeq_Plus_mono1:
-assumes "r \<le>o r'"
-shows "|(Field r) <+> C| \<le>o |(Field r') <+> C|"
-using assms card_of_mono2 card_of_Plus_mono1 by blast
+  assumes "r \<le>o r'"
+  shows "|(Field r) <+> C| \<le>o |(Field r') <+> C|"
+  using assms card_of_mono2 card_of_Plus_mono1 by blast
 
 lemma card_of_Plus_mono2:
-assumes "|A| \<le>o |B|"
-shows "|C <+> A| \<le>o |C <+> B|"
-using assms card_of_Plus_mono1[of A B C]
-      card_of_Plus_commute[of C A]  card_of_Plus_commute[of B C]
-      ordIso_ordLeq_trans[of "|C <+> A|"] ordLeq_ordIso_trans[of "|C <+> A|"]
-by blast
+  assumes "|A| \<le>o |B|"
+  shows "|C <+> A| \<le>o |C <+> B|"
+  using card_of_Plus_mono1[OF assms]
+  by (blast intro: card_of_Plus_commute ordIso_ordLeq_trans ordLeq_ordIso_trans)
 
 corollary ordLeq_Plus_mono2:
-assumes "r \<le>o r'"
-shows "|A <+> (Field r)| \<le>o |A <+> (Field r')|"
-using assms card_of_mono2 card_of_Plus_mono2 by blast
+  assumes "r \<le>o r'"
+  shows "|A <+> (Field r)| \<le>o |A <+> (Field r')|"
+  using assms card_of_mono2 card_of_Plus_mono2 by blast
 
 lemma card_of_Plus_mono:
-assumes "|A| \<le>o |B|" and "|C| \<le>o |D|"
-shows "|A <+> C| \<le>o |B <+> D|"
-using assms card_of_Plus_mono1[of A B C] card_of_Plus_mono2[of C D B]
-      ordLeq_transitive[of "|A <+> C|"] by blast
+  assumes "|A| \<le>o |B|" and "|C| \<le>o |D|"
+  shows "|A <+> C| \<le>o |B <+> D|"
+  using assms card_of_Plus_mono1[of A B C] card_of_Plus_mono2[of C D B]
+    ordLeq_transitive by blast
 
 corollary ordLeq_Plus_mono:
-assumes "r \<le>o r'" and "p \<le>o p'"
-shows "|(Field r) <+> (Field p)| \<le>o |(Field r') <+> (Field p')|"
-using assms card_of_mono2[of r r'] card_of_mono2[of p p'] card_of_Plus_mono by blast
+  assumes "r \<le>o r'" and "p \<le>o p'"
+  shows "|(Field r) <+> (Field p)| \<le>o |(Field r') <+> (Field p')|"
+  using assms card_of_mono2[of r r'] card_of_mono2[of p p'] card_of_Plus_mono by blast
 
 lemma card_of_Plus_cong1:
-assumes "|A| =o |B|"
-shows "|A <+> C| =o |B <+> C|"
-using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono1)
+  assumes "|A| =o |B|"
+  shows "|A <+> C| =o |B <+> C|"
+  using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono1)
 
 corollary ordIso_Plus_cong1:
-assumes "r =o r'"
-shows "|(Field r) <+> C| =o |(Field r') <+> C|"
-using assms card_of_cong card_of_Plus_cong1 by blast
+  assumes "r =o r'"
+  shows "|(Field r) <+> C| =o |(Field r') <+> C|"
+  using assms card_of_cong card_of_Plus_cong1 by blast
 
 lemma card_of_Plus_cong2:
-assumes "|A| =o |B|"
-shows "|C <+> A| =o |C <+> B|"
-using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono2)
+  assumes "|A| =o |B|"
+  shows "|C <+> A| =o |C <+> B|"
+  using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono2)
 
 corollary ordIso_Plus_cong2:
-assumes "r =o r'"
-shows "|A <+> (Field r)| =o |A <+> (Field r')|"
-using assms card_of_cong card_of_Plus_cong2 by blast
+  assumes "r =o r'"
+  shows "|A <+> (Field r)| =o |A <+> (Field r')|"
+  using assms card_of_cong card_of_Plus_cong2 by blast
 
 lemma card_of_Plus_cong:
-assumes "|A| =o |B|" and "|C| =o |D|"
-shows "|A <+> C| =o |B <+> D|"
-using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono)
+  assumes "|A| =o |B|" and "|C| =o |D|"
+  shows "|A <+> C| =o |B <+> D|"
+  using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono)
 
 corollary ordIso_Plus_cong:
-assumes "r =o r'" and "p =o p'"
-shows "|(Field r) <+> (Field p)| =o |(Field r') <+> (Field p')|"
-using assms card_of_cong[of r r'] card_of_cong[of p p'] card_of_Plus_cong by blast
+  assumes "r =o r'" and "p =o p'"
+  shows "|(Field r) <+> (Field p)| =o |(Field r') <+> (Field p')|"
+  using assms card_of_cong[of r r'] card_of_cong[of p p'] card_of_Plus_cong by blast
 
 lemma card_of_Un_Plus_ordLeq:
-"|A \<union> B| \<le>o |A <+> B|"
-proof-
-   let ?f = "\<lambda> c. if c \<in> A then Inl c else Inr c"
-   have "inj_on ?f (A \<union> B) \<and> ?f ` (A \<union> B) \<le> A <+> B"
-   unfolding inj_on_def by auto
-   thus ?thesis using card_of_ordLeq by blast
+  "|A \<union> B| \<le>o |A <+> B|"
+proof -
+  let ?f = "\<lambda> c. if c \<in> A then Inl c else Inr c"
+  have "inj_on ?f (A \<union> B) \<and> ?f ` (A \<union> B) \<le> A <+> B"
+    unfolding inj_on_def by auto
+  thus ?thesis using card_of_ordLeq by blast
 qed
 
 lemma card_of_Times1:
-assumes "A \<noteq> {}"
-shows "|B| \<le>o |B \<times> A|"
-proof(cases "B = {}", simp add: card_of_empty)
-  assume *: "B \<noteq> {}"
+  assumes "A \<noteq> {}"
+  shows "|B| \<le>o |B \<times> A|"
+proof(cases "B = {}")
+  case False
   have "fst `(B \<times> A) = B" using assms by auto
   thus ?thesis using inj_on_iff_surj[of B "B \<times> A"]
-                     card_of_ordLeq[of B "B \<times> A"] * by blast
-qed
+      card_of_ordLeq False by blast
+qed (simp add: card_of_empty)
 
 lemma card_of_Times_commute: "|A \<times> B| =o |B \<times> A|"
-proof-
-  let ?f = "\<lambda>(a::'a,b::'b). (b,a)"
-  have "bij_betw ?f (A \<times> B) (B \<times> A)"
-  unfolding bij_betw_def inj_on_def by auto
+proof -
+  have "bij_betw (\<lambda>(a,b). (b,a)) (A \<times> B) (B \<times> A)"
+    unfolding bij_betw_def inj_on_def by auto
   thus ?thesis using card_of_ordIso by blast
 qed
 
 lemma card_of_Times2:
-assumes "A \<noteq> {}"   shows "|B| \<le>o |A \<times> B|"
-using assms card_of_Times1[of A B] card_of_Times_commute[of B A]
-      ordLeq_ordIso_trans by blast
+  assumes "A \<noteq> {}"   shows "|B| \<le>o |A \<times> B|"
+  using assms card_of_Times1[of A B] card_of_Times_commute[of B A]
+    ordLeq_ordIso_trans by blast
 
 corollary Card_order_Times1:
-"\<lbrakk>Card_order r; B \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |(Field r) \<times> B|"
-using card_of_Times1[of B] card_of_Field_ordIso
-      ordIso_ordLeq_trans ordIso_symmetric by blast
+  "\<lbrakk>Card_order r; B \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |(Field r) \<times> B|"
+  using card_of_Times1[of B] card_of_Field_ordIso
+    ordIso_ordLeq_trans ordIso_symmetric by blast
 
 corollary Card_order_Times2:
-"\<lbrakk>Card_order r; A \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |A \<times> (Field r)|"
-using card_of_Times2[of A] card_of_Field_ordIso
-      ordIso_ordLeq_trans ordIso_symmetric by blast
+  "\<lbrakk>Card_order r; A \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |A \<times> (Field r)|"
+  using card_of_Times2[of A] card_of_Field_ordIso
+    ordIso_ordLeq_trans ordIso_symmetric by blast
 
 lemma card_of_Times3: "|A| \<le>o |A \<times> A|"
-using card_of_Times1[of A]
-by(cases "A = {}", simp add: card_of_empty, blast)
+  using card_of_Times1[of A]
+  by(cases "A = {}", simp add: card_of_empty)
 
 lemma card_of_Plus_Times_bool: "|A <+> A| =o |A \<times> (UNIV::bool set)|"
-proof-
+proof -
   let ?f = "\<lambda>c::'a + 'a. case c of Inl a \<Rightarrow> (a,True)
                                   |Inr a \<Rightarrow> (a,False)"
   have "bij_betw ?f (A <+> A) (A \<times> (UNIV::bool set))"
-  proof-
-    {fix  c1 and c2 assume "?f c1 = ?f c2"
-     hence "c1 = c2"
-     by(cases c1; cases c2) auto
-    }
+  proof -
+    have "\<And>c1 c2. ?f c1 = ?f c2 \<Longrightarrow> c1 = c2" 
+      by (force split: sum.split_asm)
     moreover
-    {fix c assume "c \<in> A <+> A"
-     hence "?f c \<in> A \<times> (UNIV::bool set)"
-     by(cases c) auto
-    }
+    have "\<And>c. c \<in> A <+> A \<Longrightarrow> ?f c \<in> A \<times> (UNIV::bool set)"
+      by (force split: sum.split_asm)
     moreover
-    {fix a bl assume *: "(a,bl) \<in> A \<times> (UNIV::bool set)"
-     have "(a,bl) \<in> ?f ` ( A <+> A)"
-     proof(cases bl)
-       assume bl hence "?f(Inl a) = (a,bl)" by auto
-       thus ?thesis using * by force
-     next
-       assume "\<not> bl" hence "?f(Inr a) = (a,bl)" by auto
-       thus ?thesis using * by force
-     qed
+    {fix a bl assume "(a,bl) \<in> A \<times> (UNIV::bool set)"
+      hence "(a,bl) \<in> ?f ` ( A <+> A)"
+      by (cases bl) (force split: sum.split_asm)+
     }
     ultimately show ?thesis unfolding bij_betw_def inj_on_def by auto
   qed
@@ -670,127 +617,107 @@
 qed
 
 lemma card_of_Times_mono1:
-assumes "|A| \<le>o |B|"
-shows "|A \<times> C| \<le>o |B \<times> C|"
-proof-
-  obtain f where 1: "inj_on f A \<and> f ` A \<le> B"
-  using assms card_of_ordLeq[of A] by fastforce
-  obtain g where g_def:
-  "g = (\<lambda>(a,c::'c). (f a,c))" by blast
+  assumes "|A| \<le>o |B|"
+  shows "|A \<times> C| \<le>o |B \<times> C|"
+proof -
+  obtain f where f: "inj_on f A \<and> f ` A \<le> B"
+    using assms card_of_ordLeq[of A] by fastforce
+  define g where "g \<equiv> (\<lambda>(a,c::'c). (f a,c))" 
   have "inj_on g (A \<times> C) \<and> g ` (A \<times> C) \<le> (B \<times> C)"
-  using 1 unfolding inj_on_def using g_def by auto
+    using f unfolding inj_on_def using g_def by auto
   thus ?thesis using card_of_ordLeq by blast
 qed
 
 corollary ordLeq_Times_mono1:
-assumes "r \<le>o r'"
-shows "|(Field r) \<times> C| \<le>o |(Field r') \<times> C|"
-using assms card_of_mono2 card_of_Times_mono1 by blast
+  assumes "r \<le>o r'"
+  shows "|(Field r) \<times> C| \<le>o |(Field r') \<times> C|"
+  using assms card_of_mono2 card_of_Times_mono1 by blast
 
 lemma card_of_Times_mono2:
-assumes "|A| \<le>o |B|"
-shows "|C \<times> A| \<le>o |C \<times> B|"
-using assms card_of_Times_mono1[of A B C]
-      card_of_Times_commute[of C A]  card_of_Times_commute[of B C]
-      ordIso_ordLeq_trans[of "|C \<times> A|"] ordLeq_ordIso_trans[of "|C \<times> A|"]
-by blast
+  assumes "|A| \<le>o |B|"
+  shows "|C \<times> A| \<le>o |C \<times> B|"
+  using assms card_of_Times_mono1[of A B C]
+  by (blast intro: card_of_Times_commute ordIso_ordLeq_trans ordLeq_ordIso_trans)
 
 corollary ordLeq_Times_mono2:
-assumes "r \<le>o r'"
-shows "|A \<times> (Field r)| \<le>o |A \<times> (Field r')|"
-using assms card_of_mono2 card_of_Times_mono2 by blast
+  assumes "r \<le>o r'"
+  shows "|A \<times> (Field r)| \<le>o |A \<times> (Field r')|"
+  using assms card_of_mono2 card_of_Times_mono2 by blast
 
 lemma card_of_Sigma_mono1:
-assumes "\<forall>i \<in> I. |A i| \<le>o |B i|"
-shows "|SIGMA i : I. A i| \<le>o |SIGMA i : I. B i|"
-proof-
+  assumes "\<forall>i \<in> I. |A i| \<le>o |B i|"
+  shows "|SIGMA i : I. A i| \<le>o |SIGMA i : I. B i|"
+proof -
   have "\<forall>i. i \<in> I \<longrightarrow> (\<exists>f. inj_on f (A i) \<and> f ` (A i) \<le> B i)"
-  using assms by (auto simp add: card_of_ordLeq)
+    using assms by (auto simp add: card_of_ordLeq)
   with choice[of "\<lambda> i f. i \<in> I \<longrightarrow> inj_on f (A i) \<and> f ` (A i) \<le> B i"]
-  obtain F where 1: "\<forall>i \<in> I. inj_on (F i) (A i) \<and> (F i) ` (A i) \<le> B i"
+  obtain F where F: "\<forall>i \<in> I. inj_on (F i) (A i) \<and> (F i) ` (A i) \<le> B i"
     by atomize_elim (auto intro: bchoice)
-  obtain g where g_def: "g = (\<lambda>(i,a::'b). (i,F i a))" by blast
+  define g where "g \<equiv> (\<lambda>(i,a::'b). (i,F i a))" 
   have "inj_on g (Sigma I A) \<and> g ` (Sigma I A) \<le> (Sigma I B)"
-  using 1 unfolding inj_on_def using g_def by force
+    using F unfolding inj_on_def using g_def by force
   thus ?thesis using card_of_ordLeq by blast
 qed
 
 lemma card_of_UNION_Sigma:
-"|\<Union>i \<in> I. A i| \<le>o |SIGMA i : I. A i|"
-using Ex_inj_on_UNION_Sigma [of A I] card_of_ordLeq by blast
+  "|\<Union>i \<in> I. A i| \<le>o |SIGMA i : I. A i|"
+  using Ex_inj_on_UNION_Sigma [of A I] card_of_ordLeq by blast
 
 lemma card_of_bool:
-assumes "a1 \<noteq> a2"
-shows "|UNIV::bool set| =o |{a1,a2}|"
-proof-
-  let ?f = "\<lambda> bl. case bl of True \<Rightarrow> a1 | False \<Rightarrow> a2"
+  assumes "a1 \<noteq> a2"
+  shows "|UNIV::bool set| =o |{a1,a2}|"
+proof -
+  let ?f = "\<lambda> bl. if bl then a1 else a2"
   have "bij_betw ?f UNIV {a1,a2}"
-  proof-
-    {fix bl1 and bl2 assume "?f  bl1 = ?f bl2"
-     hence "bl1 = bl2" using assms by (cases bl1, cases bl2) auto
-    }
+  proof -
+    have "\<And>bl1 bl2. ?f bl1 = ?f bl2 \<Longrightarrow> bl1 = bl2"
+      using assms by (force split: if_split_asm)
     moreover
-    {fix bl have "?f bl \<in> {a1,a2}" by (cases bl) auto
-    }
-    moreover
-    {fix a assume *: "a \<in> {a1,a2}"
-     have "a \<in> ?f ` UNIV"
-     proof(cases "a = a1")
-       assume "a = a1"
-       hence "?f True = a" by auto  thus ?thesis by blast
-     next
-       assume "a \<noteq> a1" hence "a = a2" using * by auto
-       hence "?f False = a" by auto  thus ?thesis by blast
-     qed
-    }
-    ultimately show ?thesis unfolding bij_betw_def inj_on_def by blast
+    have "\<And>bl. ?f bl \<in> {a1,a2}"
+      using assms by (force split: if_split_asm)
+    ultimately show ?thesis unfolding bij_betw_def inj_on_def by force
   qed
   thus ?thesis using card_of_ordIso by blast
 qed
 
 lemma card_of_Plus_Times_aux:
-assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
-        LEQ: "|A| \<le>o |B|"
-shows "|A <+> B| \<le>o |A \<times> B|"
-proof-
+  assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
+    LEQ: "|A| \<le>o |B|"
+  shows "|A <+> B| \<le>o |A \<times> B|"
+proof -
   have 1: "|UNIV::bool set| \<le>o |A|"
-  using A2 card_of_mono1[of "{a1,a2}"] card_of_bool[of a1 a2]
-        ordIso_ordLeq_trans[of "|UNIV::bool set|"] by blast
-  (*  *)
+    using A2 card_of_mono1[of "{a1,a2}"] card_of_bool[of a1 a2]
+    by (blast intro: ordIso_ordLeq_trans)
   have "|A <+> B| \<le>o |B <+> B|"
-  using LEQ card_of_Plus_mono1 by blast
+    using LEQ card_of_Plus_mono1 by blast
   moreover have "|B <+> B| =o |B \<times> (UNIV::bool set)|"
-  using card_of_Plus_Times_bool by blast
+    using card_of_Plus_Times_bool by blast
   moreover have "|B \<times> (UNIV::bool set)| \<le>o |B \<times> A|"
-  using 1 by (simp add: card_of_Times_mono2)
+    using 1 by (simp add: card_of_Times_mono2)
   moreover have " |B \<times> A| =o |A \<times> B|"
-  using card_of_Times_commute by blast
+    using card_of_Times_commute by blast
   ultimately show "|A <+> B| \<le>o |A \<times> B|"
-  using ordLeq_ordIso_trans[of "|A <+> B|" "|B <+> B|" "|B \<times> (UNIV::bool set)|"]
-        ordLeq_transitive[of "|A <+> B|" "|B \<times> (UNIV::bool set)|" "|B \<times> A|"]
-        ordLeq_ordIso_trans[of "|A <+> B|" "|B \<times> A|" "|A \<times> B|"]
-  by blast
+    by (blast intro: ordLeq_transitive dest: ordLeq_ordIso_trans)
 qed
 
 lemma card_of_Plus_Times:
-assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
-        B2: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B"
-shows "|A <+> B| \<le>o |A \<times> B|"
-proof-
+  assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and B2: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B"
+  shows "|A <+> B| \<le>o |A \<times> B|"
+proof -
   {assume "|A| \<le>o |B|"
-   hence ?thesis using assms by (auto simp add: card_of_Plus_Times_aux)
+    hence ?thesis using assms by (auto simp add: card_of_Plus_Times_aux)
   }
   moreover
   {assume "|B| \<le>o |A|"
-   hence "|B <+> A| \<le>o |B \<times> A|"
-   using assms by (auto simp add: card_of_Plus_Times_aux)
-   hence ?thesis
-   using card_of_Plus_commute card_of_Times_commute
-         ordIso_ordLeq_trans ordLeq_ordIso_trans by blast
+    hence "|B <+> A| \<le>o |B \<times> A|"
+      using assms by (auto simp add: card_of_Plus_Times_aux)
+    hence ?thesis
+      using card_of_Plus_commute card_of_Times_commute
+        ordIso_ordLeq_trans ordLeq_ordIso_trans by blast
   }
   ultimately show ?thesis
-  using card_of_Well_order[of A] card_of_Well_order[of B]
-        ordLeq_total[of "|A|"] by blast
+    using card_of_Well_order[of A] card_of_Well_order[of B]
+      ordLeq_total[of "|A|"] by blast
 qed
 
 lemma card_of_Times_Plus_distrib:
@@ -802,27 +729,27 @@
 qed
 
 lemma card_of_ordLeq_finite:
-assumes "|A| \<le>o |B|" and "finite B"
-shows "finite A"
-using assms unfolding ordLeq_def
-using embed_inj_on[of "|A|" "|B|"]  embed_Field[of "|A|" "|B|"]
-      Field_card_of[of "A"] Field_card_of[of "B"] inj_on_finite[of _ "A" "B"] by fastforce
+  assumes "|A| \<le>o |B|" and "finite B"
+  shows "finite A"
+  using assms unfolding ordLeq_def
+  using embed_inj_on[of "|A|" "|B|"]  embed_Field[of "|A|" "|B|"]
+    Field_card_of[of "A"] Field_card_of[of "B"] inj_on_finite[of _ "A" "B"] by fastforce
 
 lemma card_of_ordLeq_infinite:
-assumes "|A| \<le>o |B|" and "\<not> finite A"
-shows "\<not> finite B"
-using assms card_of_ordLeq_finite by auto
+  assumes "|A| \<le>o |B|" and "\<not> finite A"
+  shows "\<not> finite B"
+  using assms card_of_ordLeq_finite by auto
 
 lemma card_of_ordIso_finite:
-assumes "|A| =o |B|"
-shows "finite A = finite B"
-using assms unfolding ordIso_def iso_def[abs_def]
-by (auto simp: bij_betw_finite Field_card_of)
+  assumes "|A| =o |B|"
+  shows "finite A = finite B"
+  using assms unfolding ordIso_def iso_def[abs_def]
+  by (auto simp: bij_betw_finite Field_card_of)
 
 lemma card_of_ordIso_finite_Field:
-assumes "Card_order r" and "r =o |A|"
-shows "finite(Field r) = finite A"
-using assms card_of_Field_ordIso card_of_ordIso_finite ordIso_equivalence by blast
+  assumes "Card_order r" and "r =o |A|"
+  shows "finite(Field r) = finite A"
+  using assms card_of_Field_ordIso card_of_ordIso_finite ordIso_equivalence by blast
 
 
 subsection \<open>Cardinals versus set operations involving infinite sets\<close>
@@ -835,18 +762,18 @@
 at page 47 in @{cite "card-book"}. Then everything else follows fairly easily.\<close>
 
 lemma infinite_iff_card_of_nat:
-"\<not> finite A \<longleftrightarrow> ( |UNIV::nat set| \<le>o |A| )"
-unfolding infinite_iff_countable_subset card_of_ordLeq ..
+  "\<not> finite A \<longleftrightarrow> ( |UNIV::nat set| \<le>o |A| )"
+  unfolding infinite_iff_countable_subset card_of_ordLeq ..
 
 text\<open>The next two results correspond to the ZF fact that all infinite cardinals are
 limit ordinals:\<close>
 
 lemma Card_order_infinite_not_under:
-assumes CARD: "Card_order r" and INF: "\<not>finite (Field r)"
-shows "\<not> (\<exists>a. Field r = under r a)"
+  assumes CARD: "Card_order r" and INF: "\<not>finite (Field r)"
+  shows "\<not> (\<exists>a. Field r = under r a)"
 proof(auto)
   have 0: "Well_order r \<and> wo_rel r \<and> Refl r"
-  using CARD unfolding wo_rel_def card_order_on_def order_on_defs by auto
+    using CARD unfolding wo_rel_def card_order_on_def order_on_defs by auto
   fix a assume *: "Field r = under r a"
   show False
   proof(cases "a \<in> Field r")
@@ -857,115 +784,113 @@
     let ?r' = "Restr r (underS r a)"
     assume Case2: "a \<in> Field r"
     hence 1: "under r a = underS r a \<union> {a} \<and> a \<notin> underS r a"
-    using 0 Refl_under_underS[of r a] underS_notIn[of a r] by blast
+      using 0 Refl_under_underS[of r a] underS_notIn[of a r] by blast
     have 2: "wo_rel.ofilter r (underS r a) \<and> underS r a < Field r"
-    using 0 wo_rel.underS_ofilter * 1 Case2 by fast
+      using 0 wo_rel.underS_ofilter * 1 Case2 by fast
     hence "?r' <o r" using 0 using ofilter_ordLess by blast
     moreover
     have "Field ?r' = underS r a \<and> Well_order ?r'"
-    using  2 0 Field_Restr_ofilter[of r] Well_order_Restr[of r] by blast
+      using  2 0 Field_Restr_ofilter[of r] Well_order_Restr[of r] by blast
     ultimately have "|underS r a| <o r" using ordLess_Field[of ?r'] by auto
     moreover have "|under r a| =o r" using * CARD card_of_Field_ordIso[of r] by auto
     ultimately have "|underS r a| <o |under r a|"
-    using ordIso_symmetric ordLess_ordIso_trans by blast
+      using ordIso_symmetric ordLess_ordIso_trans by blast
     moreover
     {have "\<exists>f. bij_betw f (under r a) (underS r a)"
-     using infinite_imp_bij_betw[of "Field r" a] INF * 1 by auto
-     hence "|under r a| =o |underS r a|" using card_of_ordIso by blast
+        using infinite_imp_bij_betw[of "Field r" a] INF * 1 by auto
+      hence "|under r a| =o |underS r a|" using card_of_ordIso by blast
     }
     ultimately show False using not_ordLess_ordIso ordIso_symmetric by blast
   qed
 qed
 
 lemma infinite_Card_order_limit:
-assumes r: "Card_order r" and "\<not>finite (Field r)"
-and a: "a \<in> Field r"
-shows "\<exists>b \<in> Field r. a \<noteq> b \<and> (a,b) \<in> r"
-proof-
+  assumes r: "Card_order r" and "\<not>finite (Field r)"
+    and a: "a \<in> Field r"
+  shows "\<exists>b \<in> Field r. a \<noteq> b \<and> (a,b) \<in> r"
+proof -
   have "Field r \<noteq> under r a"
-  using assms Card_order_infinite_not_under by blast
+    using assms Card_order_infinite_not_under by blast
   moreover have "under r a \<le> Field r"
-  using under_Field .
-  ultimately have "under r a < Field r" by blast
-  then obtain b where 1: "b \<in> Field r \<and> \<not> (b,a) \<in> r"
-  unfolding under_def by blast
+    using under_Field .
+  ultimately obtain b where b: "b \<in> Field r \<and> \<not> (b,a) \<in> r"
+    unfolding under_def by blast
   moreover have ba: "b \<noteq> a"
-  using 1 r unfolding card_order_on_def well_order_on_def
-  linear_order_on_def partial_order_on_def preorder_on_def refl_on_def by auto
+    using b r unfolding card_order_on_def well_order_on_def
+      linear_order_on_def partial_order_on_def preorder_on_def refl_on_def by auto
   ultimately have "(a,b) \<in> r"
-  using a r unfolding card_order_on_def well_order_on_def linear_order_on_def
-  total_on_def by blast
-  thus ?thesis using 1 ba by auto
+    using a r unfolding card_order_on_def well_order_on_def linear_order_on_def
+      total_on_def by blast
+  thus ?thesis using b ba by auto
 qed
 
 theorem Card_order_Times_same_infinite:
-assumes CO: "Card_order r" and INF: "\<not>finite(Field r)"
-shows "|Field r \<times> Field r| \<le>o r"
-proof-
-  obtain phi where phi_def:
-  "phi = (\<lambda>r::'a rel. Card_order r \<and> \<not>finite(Field r) \<and>
-                      \<not> |Field r \<times> Field r| \<le>o r )" by blast
+  assumes CO: "Card_order r" and INF: "\<not>finite(Field r)"
+  shows "|Field r \<times> Field r| \<le>o r"
+proof -
+  define phi where 
+    "phi \<equiv> \<lambda>r::'a rel. Card_order r \<and> \<not>finite(Field r) \<and> \<not> |Field r \<times> Field r| \<le>o r"
   have temp1: "\<forall>r. phi r \<longrightarrow> Well_order r"
-  unfolding phi_def card_order_on_def by auto
+    unfolding phi_def card_order_on_def by auto
   have Ft: "\<not>(\<exists>r. phi r)"
   proof
     assume "\<exists>r. phi r"
     hence "{r. phi r} \<noteq> {} \<and> {r. phi r} \<le> {r. Well_order r}"
-    using temp1 by auto
+      using temp1 by auto
     then obtain r where 1: "phi r" and 2: "\<forall>r'. phi r' \<longrightarrow> r \<le>o r'" and
-                   3: "Card_order r \<and> Well_order r"
-    using exists_minim_Well_order[of "{r. phi r}"] temp1 phi_def by blast
+      3: "Card_order r \<and> Well_order r"
+      using exists_minim_Well_order[of "{r. phi r}"] temp1 phi_def by blast
     let ?A = "Field r"  let ?r' = "bsqr r"
     have 4: "Well_order ?r' \<and> Field ?r' = ?A \<times> ?A \<and> |?A| =o r"
-    using 3 bsqr_Well_order Field_bsqr card_of_Field_ordIso by blast
+      using 3 bsqr_Well_order Field_bsqr card_of_Field_ordIso by blast
     have 5: "Card_order |?A \<times> ?A| \<and> Well_order |?A \<times> ?A|"
-    using card_of_Card_order card_of_Well_order by blast
-    (*  *)
+      using card_of_Card_order card_of_Well_order by blast
+        (*  *)
     have "r <o |?A \<times> ?A|"
-    using 1 3 5 ordLess_or_ordLeq unfolding phi_def by blast
+      using 1 3 5 ordLess_or_ordLeq unfolding phi_def by blast
     moreover have "|?A \<times> ?A| \<le>o ?r'"
-    using card_of_least[of "?A \<times> ?A"] 4 by auto
+      using card_of_least[of "?A \<times> ?A"] 4 by auto
     ultimately have "r <o ?r'" using ordLess_ordLeq_trans by auto
     then obtain f where 6: "embed r ?r' f" and 7: "\<not> bij_betw f ?A (?A \<times> ?A)"
-    unfolding ordLess_def embedS_def[abs_def]
-    by (auto simp add: Field_bsqr)
+      unfolding ordLess_def embedS_def[abs_def]
+      by (auto simp add: Field_bsqr)
     let ?B = "f ` ?A"
     have "|?A| =o |?B|"
-    using 3 6 embed_inj_on inj_on_imp_bij_betw card_of_ordIso by blast
+      using 3 6 embed_inj_on inj_on_imp_bij_betw card_of_ordIso by blast
     hence 8: "r =o |?B|" using 4 ordIso_transitive ordIso_symmetric by blast
-    (*  *)
+        (*  *)
     have "wo_rel.ofilter ?r' ?B"
-    using 6 embed_Field_ofilter 3 4 by blast
+      using 6 embed_Field_ofilter 3 4 by blast
     hence "wo_rel.ofilter ?r' ?B \<and> ?B \<noteq> ?A \<times> ?A \<and> ?B \<noteq> Field ?r'"
-    using 7 unfolding bij_betw_def using 6 3 embed_inj_on 4 by auto
+      using 7 unfolding bij_betw_def using 6 3 embed_inj_on 4 by auto
     hence temp2: "wo_rel.ofilter ?r' ?B \<and> ?B < ?A \<times> ?A"
-    using 4 wo_rel_def[of ?r'] wo_rel.ofilter_def[of ?r' ?B] by blast
+      using 4 wo_rel_def[of ?r'] wo_rel.ofilter_def[of ?r' ?B] by blast
     have "\<not> (\<exists>a. Field r = under r a)"
-    using 1 unfolding phi_def using Card_order_infinite_not_under[of r] by auto
+      using 1 unfolding phi_def using Card_order_infinite_not_under[of r] by auto
     then obtain A1 where temp3: "wo_rel.ofilter r A1 \<and> A1 < ?A" and 9: "?B \<le> A1 \<times> A1"
-    using temp2 3 bsqr_ofilter[of r ?B] by blast
+      using temp2 3 bsqr_ofilter[of r ?B] by blast
     hence "|?B| \<le>o |A1 \<times> A1|" using card_of_mono1 by blast
     hence 10: "r \<le>o |A1 \<times> A1|" using 8 ordIso_ordLeq_trans by blast
     let ?r1 = "Restr r A1"
     have "?r1 <o r" using temp3 ofilter_ordLess 3 by blast
     moreover
     {have "well_order_on A1 ?r1" using 3 temp3 well_order_on_Restr by blast
-     hence "|A1| \<le>o ?r1" using 3 Well_order_Restr card_of_least by blast
+      hence "|A1| \<le>o ?r1" using 3 Well_order_Restr card_of_least by blast
     }
     ultimately have 11: "|A1| <o r" using ordLeq_ordLess_trans by blast
-    (*  *)
+        (*  *)
     have "\<not> finite (Field r)" using 1 unfolding phi_def by simp
     hence "\<not> finite ?B" using 8 3 card_of_ordIso_finite_Field[of r ?B] by blast
     hence "\<not> finite A1" using 9 finite_cartesian_product finite_subset by blast
     moreover have temp4: "Field |A1| = A1 \<and> Well_order |A1| \<and> Card_order |A1|"
-    using card_of_Card_order[of A1] card_of_Well_order[of A1]
-    by (simp add: Field_card_of)
+      using card_of_Card_order[of A1] card_of_Well_order[of A1]
+      by (simp add: Field_card_of)
     moreover have "\<not> r \<le>o | A1 |"
-    using temp4 11 3 using not_ordLeq_iff_ordLess by blast
+      using temp4 11 3 using not_ordLeq_iff_ordLess by blast
     ultimately have "\<not> finite(Field |A1| ) \<and> Card_order |A1| \<and> \<not> r \<le>o | A1 |"
-    by (simp add: card_of_card_order_on)
+      by (simp add: card_of_card_order_on)
     hence "|Field |A1| \<times> Field |A1| | \<le>o |A1|"
-    using 2 unfolding phi_def by blast
+      using 2 unfolding phi_def by blast
     hence "|A1 \<times> A1 | \<le>o |A1|" using temp4 by auto
     hence "r \<le>o |A1|" using 10 ordLeq_transitive by blast
     thus False using 11 not_ordLess_ordLeq by auto
@@ -974,175 +899,175 @@
 qed
 
 corollary card_of_Times_same_infinite:
-assumes "\<not>finite A"
-shows "|A \<times> A| =o |A|"
-proof-
+  assumes "\<not>finite A"
+  shows "|A \<times> A| =o |A|"
+proof -
   let ?r = "|A|"
   have "Field ?r = A \<and> Card_order ?r"
-  using Field_card_of card_of_Card_order[of A] by fastforce
+    using Field_card_of card_of_Card_order[of A] by fastforce
   hence "|A \<times> A| \<le>o |A|"
-  using Card_order_Times_same_infinite[of ?r] assms by auto
+    using Card_order_Times_same_infinite[of ?r] assms by auto
   thus ?thesis using card_of_Times3 ordIso_iff_ordLeq by blast
 qed
 
 lemma card_of_Times_infinite:
-assumes INF: "\<not>finite A" and NE: "B \<noteq> {}" and LEQ: "|B| \<le>o |A|"
-shows "|A \<times> B| =o |A| \<and> |B \<times> A| =o |A|"
-proof-
+  assumes INF: "\<not>finite A" and NE: "B \<noteq> {}" and LEQ: "|B| \<le>o |A|"
+  shows "|A \<times> B| =o |A| \<and> |B \<times> A| =o |A|"
+proof -
   have "|A| \<le>o |A \<times> B| \<and> |A| \<le>o |B \<times> A|"
-  using assms by (simp add: card_of_Times1 card_of_Times2)
+    using assms by (simp add: card_of_Times1 card_of_Times2)
   moreover
   {have "|A \<times> B| \<le>o |A \<times> A| \<and> |B \<times> A| \<le>o |A \<times> A|"
-   using LEQ card_of_Times_mono1 card_of_Times_mono2 by blast
-   moreover have "|A \<times> A| =o |A|" using INF card_of_Times_same_infinite by blast
-   ultimately have "|A \<times> B| \<le>o |A| \<and> |B \<times> A| \<le>o |A|"
-   using ordLeq_ordIso_trans[of "|A \<times> B|"] ordLeq_ordIso_trans[of "|B \<times> A|"] by auto
+      using LEQ card_of_Times_mono1 card_of_Times_mono2 by blast
+    moreover have "|A \<times> A| =o |A|" using INF card_of_Times_same_infinite by blast
+    ultimately have "|A \<times> B| \<le>o |A| \<and> |B \<times> A| \<le>o |A|"
+      using ordLeq_ordIso_trans[of "|A \<times> B|"] ordLeq_ordIso_trans[of "|B \<times> A|"] by auto
   }
   ultimately show ?thesis by (simp add: ordIso_iff_ordLeq)
 qed
 
 corollary Card_order_Times_infinite:
-assumes INF: "\<not>finite(Field r)" and CARD: "Card_order r" and
-        NE: "Field p \<noteq> {}" and LEQ: "p \<le>o r"
-shows "| (Field r) \<times> (Field p) | =o r \<and> | (Field p) \<times> (Field r) | =o r"
-proof-
+  assumes INF: "\<not>finite(Field r)" and CARD: "Card_order r" and
+    NE: "Field p \<noteq> {}" and LEQ: "p \<le>o r"
+  shows "| (Field r) \<times> (Field p) | =o r \<and> | (Field p) \<times> (Field r) | =o r"
+proof -
   have "|Field r \<times> Field p| =o |Field r| \<and> |Field p \<times> Field r| =o |Field r|"
-  using assms by (simp add: card_of_Times_infinite card_of_mono2)
+    using assms by (simp add: card_of_Times_infinite card_of_mono2)
   thus ?thesis
-  using assms card_of_Field_ordIso[of r]
-        ordIso_transitive[of "|Field r \<times> Field p|"]
-        ordIso_transitive[of _ "|Field r|"] by blast
+    using assms card_of_Field_ordIso by (blast intro: ordIso_transitive)
 qed
 
 lemma card_of_Sigma_ordLeq_infinite:
-assumes INF: "\<not>finite B" and
-        LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
-shows "|SIGMA i : I. A i| \<le>o |B|"
-proof(cases "I = {}", simp add: card_of_empty)
-  assume *: "I \<noteq> {}"
+  assumes INF: "\<not>finite B" and
+    LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
+  shows "|SIGMA i : I. A i| \<le>o |B|"
+proof(cases "I = {}")
+  case False
   have "|SIGMA i : I. A i| \<le>o |I \<times> B|"
-  using card_of_Sigma_mono1[OF LEQ] by blast
+    using card_of_Sigma_mono1[OF LEQ] by blast
   moreover have "|I \<times> B| =o |B|"
-  using INF * LEQ_I by (auto simp add: card_of_Times_infinite)
+    using INF False LEQ_I by (auto simp add: card_of_Times_infinite)
   ultimately show ?thesis using ordLeq_ordIso_trans by blast
-qed
+qed (simp add: card_of_empty)
 
 lemma card_of_Sigma_ordLeq_infinite_Field:
-assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
-        LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
-shows "|SIGMA i : I. A i| \<le>o r"
-proof-
+  assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
+    LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
+  shows "|SIGMA i : I. A i| \<le>o r"
+proof -
   let ?B  = "Field r"
-  have 1: "r =o |?B| \<and> |?B| =o r" using r card_of_Field_ordIso
-  ordIso_symmetric by blast
+  have 1: "r =o |?B| \<and> |?B| =o r" 
+    using r card_of_Field_ordIso ordIso_symmetric by blast
   hence "|I| \<le>o |?B|"  "\<forall>i \<in> I. |A i| \<le>o |?B|"
-  using LEQ_I LEQ ordLeq_ordIso_trans by blast+
+    using LEQ_I LEQ ordLeq_ordIso_trans by blast+
   hence  "|SIGMA i : I. A i| \<le>o |?B|" using INF LEQ
-  card_of_Sigma_ordLeq_infinite by blast
+      card_of_Sigma_ordLeq_infinite by blast
   thus ?thesis using 1 ordLeq_ordIso_trans by blast
 qed
 
 lemma card_of_Times_ordLeq_infinite_Field:
-"\<lbrakk>\<not>finite (Field r); |A| \<le>o r; |B| \<le>o r; Card_order r\<rbrakk>
- \<Longrightarrow> |A \<times> B| \<le>o r"
-by(simp add: card_of_Sigma_ordLeq_infinite_Field)
+  "\<lbrakk>\<not>finite (Field r); |A| \<le>o r; |B| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> |A \<times> B| \<le>o r"
+  by(simp add: card_of_Sigma_ordLeq_infinite_Field)
 
 lemma card_of_Times_infinite_simps:
-"\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A \<times> B| =o |A|"
-"\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |A \<times> B|"
-"\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |B \<times> A| =o |A|"
-"\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |B \<times> A|"
-by (auto simp add: card_of_Times_infinite ordIso_symmetric)
+  "\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A \<times> B| =o |A|"
+  "\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |A \<times> B|"
+  "\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |B \<times> A| =o |A|"
+  "\<lbrakk>\<not>finite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |B \<times> A|"
+  by (auto simp add: card_of_Times_infinite ordIso_symmetric)
 
 lemma card_of_UNION_ordLeq_infinite:
-assumes INF: "\<not>finite B" and
-        LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
-shows "|\<Union>i \<in> I. A i| \<le>o |B|"
-proof(cases "I = {}", simp add: card_of_empty)
-  assume *: "I \<noteq> {}"
+  assumes INF: "\<not>finite B" and LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
+  shows "|\<Union>i \<in> I. A i| \<le>o |B|"
+proof(cases "I = {}")
+  case False
   have "|\<Union>i \<in> I. A i| \<le>o |SIGMA i : I. A i|"
-  using card_of_UNION_Sigma by blast
+    using card_of_UNION_Sigma by blast
   moreover have "|SIGMA i : I. A i| \<le>o |B|"
-  using assms card_of_Sigma_ordLeq_infinite by blast
+    using assms card_of_Sigma_ordLeq_infinite by blast
   ultimately show ?thesis using ordLeq_transitive by blast
-qed
+qed (simp add: card_of_empty)
 
 corollary card_of_UNION_ordLeq_infinite_Field:
-assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
-        LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
-shows "|\<Union>i \<in> I. A i| \<le>o r"
-proof-
+  assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
+    LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
+  shows "|\<Union>i \<in> I. A i| \<le>o r"
+proof -
   let ?B  = "Field r"
-  have 1: "r =o |?B| \<and> |?B| =o r" using r card_of_Field_ordIso
-  ordIso_symmetric by blast
+  have 1: "r =o |?B| \<and> |?B| =o r" 
+    using r card_of_Field_ordIso ordIso_symmetric by blast
   hence "|I| \<le>o |?B|"  "\<forall>i \<in> I. |A i| \<le>o |?B|"
-  using LEQ_I LEQ ordLeq_ordIso_trans by blast+
+    using LEQ_I LEQ ordLeq_ordIso_trans by blast+
   hence  "|\<Union>i \<in> I. A i| \<le>o |?B|" using INF LEQ
-  card_of_UNION_ordLeq_infinite by blast
+      card_of_UNION_ordLeq_infinite by blast
   thus ?thesis using 1 ordLeq_ordIso_trans by blast
 qed
 
 lemma card_of_Plus_infinite1:
-assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
-shows "|A <+> B| =o |A|"
-proof(cases "B = {}", simp add: card_of_Plus_empty1 card_of_Plus_empty2 ordIso_symmetric)
+  assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
+  shows "|A <+> B| =o |A|"
+proof(cases "B = {}")
+  case True
+  then show ?thesis
+    by (simp add: card_of_Plus_empty1 card_of_Plus_empty2 ordIso_symmetric)
+next
+  case False
   let ?Inl = "Inl::'a \<Rightarrow> 'a + 'b"  let ?Inr = "Inr::'b \<Rightarrow> 'a + 'b"
   assume *: "B \<noteq> {}"
   then obtain b1 where 1: "b1 \<in> B" by blast
   show ?thesis
   proof(cases "B = {b1}")
-    assume Case1: "B = {b1}"
+    case True
     have 2: "bij_betw ?Inl A ((?Inl ` A))"
-    unfolding bij_betw_def inj_on_def by auto
+      unfolding bij_betw_def inj_on_def by auto
     hence 3: "\<not>finite (?Inl ` A)"
-    using INF bij_betw_finite[of ?Inl A] by blast
+      using INF bij_betw_finite[of ?Inl A] by blast
     let ?A' = "?Inl ` A \<union> {?Inr b1}"
     obtain g where "bij_betw g (?Inl ` A) ?A'"
-    using 3 infinite_imp_bij_betw2[of "?Inl ` A"] by auto
-    moreover have "?A' = A <+> B" using Case1 by blast
+      using 3 infinite_imp_bij_betw2[of "?Inl ` A"] by auto
+    moreover have "?A' = A <+> B" using True by blast
     ultimately have "bij_betw g (?Inl ` A) (A <+> B)" by simp
     hence "bij_betw (g \<circ> ?Inl) A (A <+> B)"
-    using 2 by (auto simp add: bij_betw_trans)
+      using 2 by (auto simp add: bij_betw_trans)
     thus ?thesis using card_of_ordIso ordIso_symmetric by blast
   next
-    assume Case2: "B \<noteq> {b1}"
+    case False
     with * 1 obtain b2 where 3: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B" by fastforce
     obtain f where "inj_on f B \<and> f ` B \<le> A"
-    using LEQ card_of_ordLeq[of B] by fastforce
+      using LEQ card_of_ordLeq[of B] by fastforce
     with 3 have "f b1 \<noteq> f b2 \<and> {f b1, f b2} \<le> A"
-    unfolding inj_on_def by auto
+      unfolding inj_on_def by auto
     with 3 have "|A <+> B| \<le>o |A \<times> B|"
-    by (auto simp add: card_of_Plus_Times)
+      by (auto simp add: card_of_Plus_Times)
     moreover have "|A \<times> B| =o |A|"
-    using assms * by (simp add: card_of_Times_infinite_simps)
+      using assms * by (simp add: card_of_Times_infinite_simps)
     ultimately have "|A <+> B| \<le>o |A|" using ordLeq_ordIso_trans by blast
     thus ?thesis using card_of_Plus1 ordIso_iff_ordLeq by blast
   qed
 qed
 
 lemma card_of_Plus_infinite2:
-assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
-shows "|B <+> A| =o |A|"
-using assms card_of_Plus_commute card_of_Plus_infinite1
-ordIso_equivalence by blast
+  assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
+  shows "|B <+> A| =o |A|"
+  using assms card_of_Plus_commute card_of_Plus_infinite1
+    ordIso_equivalence by blast
 
 lemma card_of_Plus_infinite:
-assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
-shows "|A <+> B| =o |A| \<and> |B <+> A| =o |A|"
-using assms by (auto simp: card_of_Plus_infinite1 card_of_Plus_infinite2)
+  assumes INF: "\<not>finite A" and LEQ: "|B| \<le>o |A|"
+  shows "|A <+> B| =o |A| \<and> |B <+> A| =o |A|"
+  using assms by (auto simp: card_of_Plus_infinite1 card_of_Plus_infinite2)
 
 corollary Card_order_Plus_infinite:
-assumes INF: "\<not>finite(Field r)" and CARD: "Card_order r" and
-        LEQ: "p \<le>o r"
-shows "| (Field r) <+> (Field p) | =o r \<and> | (Field p) <+> (Field r) | =o r"
-proof-
+  assumes INF: "\<not>finite(Field r)" and CARD: "Card_order r" and
+    LEQ: "p \<le>o r"
+  shows "| (Field r) <+> (Field p) | =o r \<and> | (Field p) <+> (Field r) | =o r"
+proof -
   have "| Field r <+> Field p | =o | Field r | \<and>
         | Field p <+> Field r | =o | Field r |"
-  using assms by (simp add: card_of_Plus_infinite card_of_mono2)
+    using assms by (simp add: card_of_Plus_infinite card_of_mono2)
   thus ?thesis
-  using assms card_of_Field_ordIso[of r]
-        ordIso_transitive[of "|Field r <+> Field p|"]
-        ordIso_transitive[of _ "|Field r|"] by blast
+    using assms card_of_Field_ordIso by (blast intro: ordIso_transitive)
+
 qed
 
 
@@ -1158,110 +1083,111 @@
 definition "(natLess::(nat * nat) set) \<equiv> {(x,y). x < y}"
 
 abbreviation natLeq_on :: "nat \<Rightarrow> (nat * nat) set"
-where "natLeq_on n \<equiv> {(x,y). x < n \<and> y < n \<and> x \<le> y}"
+  where "natLeq_on n \<equiv> {(x,y). x < n \<and> y < n \<and> x \<le> y}"
 
 lemma infinite_cartesian_product:
-assumes "\<not>finite A" "\<not>finite B"
-shows "\<not>finite (A \<times> B)"
-proof
-  assume "finite (A \<times> B)"
-  from assms(1) have "A \<noteq> {}" by auto
-  with \<open>finite (A \<times> B)\<close> have "finite B" using finite_cartesian_productD2 by auto
-  with assms(2) show False by simp
-qed
+  assumes "\<not>finite A" "\<not>finite B"
+  shows "\<not>finite (A \<times> B)"
+using assms finite_cartesian_productD2 by auto
 
 
 subsubsection \<open>First as well-orders\<close>
 
 lemma Field_natLeq: "Field natLeq = (UNIV::nat set)"
-by(unfold Field_def natLeq_def, auto)
+  by(unfold Field_def natLeq_def, auto)
 
 lemma natLeq_Refl: "Refl natLeq"
-unfolding refl_on_def Field_def natLeq_def by auto
+  unfolding refl_on_def Field_def natLeq_def by auto
 
 lemma natLeq_trans: "trans natLeq"
-unfolding trans_def natLeq_def by auto
+  unfolding trans_def natLeq_def by auto
 
 lemma natLeq_Preorder: "Preorder natLeq"
-unfolding preorder_on_def
-by (auto simp add: natLeq_Refl natLeq_trans)
+  unfolding preorder_on_def
+  by (auto simp add: natLeq_Refl natLeq_trans)
 
 lemma natLeq_antisym: "antisym natLeq"
-unfolding antisym_def natLeq_def by auto
+  unfolding antisym_def natLeq_def by auto
 
 lemma natLeq_Partial_order: "Partial_order natLeq"
-unfolding partial_order_on_def
-by (auto simp add: natLeq_Preorder natLeq_antisym)
+  unfolding partial_order_on_def
+  by (auto simp add: natLeq_Preorder natLeq_antisym)
 
 lemma natLeq_Total: "Total natLeq"
-unfolding total_on_def natLeq_def by auto
+  unfolding total_on_def natLeq_def by auto
 
 lemma natLeq_Linear_order: "Linear_order natLeq"
-unfolding linear_order_on_def
-by (auto simp add: natLeq_Partial_order natLeq_Total)
+  unfolding linear_order_on_def
+  by (auto simp add: natLeq_Partial_order natLeq_Total)
 
 lemma natLeq_natLess_Id: "natLess = natLeq - Id"
-unfolding natLeq_def natLess_def by auto
+  unfolding natLeq_def natLess_def by auto
 
 lemma natLeq_Well_order: "Well_order natLeq"
-unfolding well_order_on_def
-using natLeq_Linear_order wf_less natLeq_natLess_Id natLeq_def natLess_def by auto
+  unfolding well_order_on_def
+  using natLeq_Linear_order wf_less natLeq_natLess_Id natLeq_def natLess_def by auto
 
 lemma Field_natLeq_on: "Field (natLeq_on n) = {x. x < n}"
-unfolding Field_def by auto
+  unfolding Field_def by auto
 
 lemma natLeq_underS_less: "underS natLeq n = {x. x < n}"
-unfolding underS_def natLeq_def by auto
+  unfolding underS_def natLeq_def by auto
 
 lemma Restr_natLeq: "Restr natLeq {x. x < n} = natLeq_on n"
-unfolding natLeq_def by force
+  unfolding natLeq_def by force
 
 lemma Restr_natLeq2:
-"Restr natLeq (underS natLeq n) = natLeq_on n"
-by (auto simp add: Restr_natLeq natLeq_underS_less)
+  "Restr natLeq (underS natLeq n) = natLeq_on n"
+  by (auto simp add: Restr_natLeq natLeq_underS_less)
 
 lemma natLeq_on_Well_order: "Well_order(natLeq_on n)"
-using Restr_natLeq[of n] natLeq_Well_order
-      Well_order_Restr[of natLeq "{x. x < n}"] by auto
+  using Restr_natLeq[of n] natLeq_Well_order
+    Well_order_Restr[of natLeq "{x. x < n}"] by auto
 
 corollary natLeq_on_well_order_on: "well_order_on {x. x < n} (natLeq_on n)"
-using natLeq_on_Well_order Field_natLeq_on by auto
+  using natLeq_on_Well_order Field_natLeq_on by auto
 
 lemma natLeq_on_wo_rel: "wo_rel(natLeq_on n)"
-unfolding wo_rel_def using natLeq_on_Well_order .
+  unfolding wo_rel_def using natLeq_on_Well_order .
 
 
 subsubsection \<open>Then as cardinals\<close>
 
 lemma natLeq_Card_order: "Card_order natLeq"
-proof(auto simp add: natLeq_Well_order
-      Card_order_iff_Restr_underS Restr_natLeq2, simp add:  Field_natLeq)
-  fix n have "finite(Field (natLeq_on n))" by (auto simp: Field_def)
-  moreover have "\<not>finite(UNIV::nat set)" by auto
-  ultimately show "natLeq_on n <o |UNIV::nat set|"
-  using finite_ordLess_infinite[of "natLeq_on n" "|UNIV::nat set|"]
-        Field_card_of[of "UNIV::nat set"]
-        card_of_Well_order[of "UNIV::nat set"] natLeq_on_Well_order[of n] by auto
+proof -
+  have "natLeq_on n <o |UNIV::nat set|" for n
+  proof -
+    have "finite(Field (natLeq_on n))" by (auto simp: Field_def)
+    moreover have "\<not>finite(UNIV::nat set)" by auto
+    ultimately show ?thesis
+      using finite_ordLess_infinite[of "natLeq_on n" "|UNIV::nat set|"]
+        card_of_Well_order[of "UNIV::nat set"] natLeq_on_Well_order
+      by (force simp add: Field_card_of)
+  qed
+  then show ?thesis
+    apply (simp add: natLeq_Well_order Card_order_iff_Restr_underS Restr_natLeq2)
+    apply (force simp add: Field_natLeq)
+    done
 qed
 
 corollary card_of_Field_natLeq:
-"|Field natLeq| =o natLeq"
-using Field_natLeq natLeq_Card_order Card_order_iff_ordIso_card_of[of natLeq]
-      ordIso_symmetric[of natLeq] by blast
+  "|Field natLeq| =o natLeq"
+  using Field_natLeq natLeq_Card_order Card_order_iff_ordIso_card_of[of natLeq]
+    ordIso_symmetric[of natLeq] by blast
 
 corollary card_of_nat:
-"|UNIV::nat set| =o natLeq"
-using Field_natLeq card_of_Field_natLeq by auto
+  "|UNIV::nat set| =o natLeq"
+  using Field_natLeq card_of_Field_natLeq by auto
 
 corollary infinite_iff_natLeq_ordLeq:
-"\<not>finite A = ( natLeq \<le>o |A| )"
-using infinite_iff_card_of_nat[of A] card_of_nat
-      ordIso_ordLeq_trans ordLeq_ordIso_trans ordIso_symmetric by blast
+  "\<not>finite A = ( natLeq \<le>o |A| )"
+  using infinite_iff_card_of_nat[of A] card_of_nat
+    ordIso_ordLeq_trans ordLeq_ordIso_trans ordIso_symmetric by blast
 
 corollary finite_iff_ordLess_natLeq:
-"finite A = ( |A| <o natLeq)"
-using infinite_iff_natLeq_ordLeq not_ordLeq_iff_ordLess
-      card_of_Well_order natLeq_Well_order by blast
+  "finite A = ( |A| <o natLeq)"
+  using infinite_iff_natLeq_ordLeq not_ordLeq_iff_ordLess
+    card_of_Well_order natLeq_Well_order by blast
 
 
 subsection \<open>The successor of a cardinal\<close>
@@ -1271,169 +1197,167 @@
 not require \<open>r\<close> to be a cardinal, only this case will be meaningful.\<close>
 
 definition isCardSuc :: "'a rel \<Rightarrow> 'a set rel \<Rightarrow> bool"
-where
-"isCardSuc r r' \<equiv>
- Card_order r' \<and> r <o r' \<and>
- (\<forall>(r''::'a set rel). Card_order r'' \<and> r <o r'' \<longrightarrow> r' \<le>o r'')"
+  where
+    "isCardSuc r r' \<equiv>
+         Card_order r' \<and> r <o r' \<and>
+         (\<forall>(r''::'a set rel). Card_order r'' \<and> r <o r'' \<longrightarrow> r' \<le>o r'')"
 
 text\<open>Now we introduce the cardinal-successor operator \<open>cardSuc\<close>,
 by picking {\em some} cardinal-order relation fulfilling \<open>isCardSuc\<close>.
 Again, the picked item shall be proved unique up to order-isomorphism.\<close>
 
 definition cardSuc :: "'a rel \<Rightarrow> 'a set rel"
-where
-"cardSuc r \<equiv> SOME r'. isCardSuc r r'"
+  where "cardSuc r \<equiv> SOME r'. isCardSuc r r'"
 
 lemma exists_minim_Card_order:
-"\<lbrakk>R \<noteq> {}; \<forall>r \<in> R. Card_order r\<rbrakk> \<Longrightarrow> \<exists>r \<in> R. \<forall>r' \<in> R. r \<le>o r'"
-unfolding card_order_on_def using exists_minim_Well_order by blast
+  "\<lbrakk>R \<noteq> {}; \<forall>r \<in> R. Card_order r\<rbrakk> \<Longrightarrow> \<exists>r \<in> R. \<forall>r' \<in> R. r \<le>o r'"
+  unfolding card_order_on_def using exists_minim_Well_order by blast
 
 lemma exists_isCardSuc:
-assumes "Card_order r"
-shows "\<exists>r'. isCardSuc r r'"
-proof-
+  assumes "Card_order r"
+  shows "\<exists>r'. isCardSuc r r'"
+proof -
   let ?R = "{(r'::'a set rel). Card_order r' \<and> r <o r'}"
   have "|Pow(Field r)| \<in> ?R \<and> (\<forall>r \<in> ?R. Card_order r)" using assms
-  by (simp add: card_of_Card_order Card_order_Pow)
+    by (simp add: card_of_Card_order Card_order_Pow)
   then obtain r where "r \<in> ?R \<and> (\<forall>r' \<in> ?R. r \<le>o r')"
-  using exists_minim_Card_order[of ?R] by blast
+    using exists_minim_Card_order[of ?R] by blast
   thus ?thesis unfolding isCardSuc_def by auto
 qed
 
 lemma cardSuc_isCardSuc:
-assumes "Card_order r"
-shows "isCardSuc r (cardSuc r)"
-unfolding cardSuc_def using assms
-by (simp add: exists_isCardSuc someI_ex)
+  assumes "Card_order r"
+  shows "isCardSuc r (cardSuc r)"
+  unfolding cardSuc_def using assms
+  by (simp add: exists_isCardSuc someI_ex)
 
 lemma cardSuc_Card_order:
-"Card_order r \<Longrightarrow> Card_order(cardSuc r)"
-using cardSuc_isCardSuc unfolding isCardSuc_def by blast
+  "Card_order r \<Longrightarrow> Card_order(cardSuc r)"
+  using cardSuc_isCardSuc unfolding isCardSuc_def by blast
 
 lemma cardSuc_greater:
-"Card_order r \<Longrightarrow> r <o cardSuc r"
-using cardSuc_isCardSuc unfolding isCardSuc_def by blast
+  "Card_order r \<Longrightarrow> r <o cardSuc r"
+  using cardSuc_isCardSuc unfolding isCardSuc_def by blast
 
 lemma cardSuc_ordLeq:
-"Card_order r \<Longrightarrow> r \<le>o cardSuc r"
-using cardSuc_greater ordLeq_iff_ordLess_or_ordIso by blast
+  "Card_order r \<Longrightarrow> r \<le>o cardSuc r"
+  using cardSuc_greater ordLeq_iff_ordLess_or_ordIso by blast
 
 text\<open>The minimality property of \<open>cardSuc\<close> originally present in its definition
 is local to the type \<open>'a set rel\<close>, i.e., that of \<open>cardSuc r\<close>:\<close>
 
 lemma cardSuc_least_aux:
-"\<lbrakk>Card_order (r::'a rel); Card_order (r'::'a set rel); r <o r'\<rbrakk> \<Longrightarrow> cardSuc r \<le>o r'"
-using cardSuc_isCardSuc unfolding isCardSuc_def by blast
+  "\<lbrakk>Card_order (r::'a rel); Card_order (r'::'a set rel); r <o r'\<rbrakk> \<Longrightarrow> cardSuc r \<le>o r'"
+  using cardSuc_isCardSuc unfolding isCardSuc_def by blast
 
 text\<open>But from this we can infer general minimality:\<close>
 
 lemma cardSuc_least:
-assumes CARD: "Card_order r" and CARD': "Card_order r'" and LESS: "r <o r'"
-shows "cardSuc r \<le>o r'"
-proof-
+  assumes CARD: "Card_order r" and CARD': "Card_order r'" and LESS: "r <o r'"
+  shows "cardSuc r \<le>o r'"
+proof -
   let ?p = "cardSuc r"
   have 0: "Well_order ?p \<and> Well_order r'"
-  using assms cardSuc_Card_order unfolding card_order_on_def by blast
-  {assume "r' <o ?p"
-   then obtain r'' where 1: "Field r'' < Field ?p" and 2: "r' =o r'' \<and> r'' <o ?p"
-   using internalize_ordLess[of r' ?p] by blast
-   (*  *)
-   have "Card_order r''" using CARD' Card_order_ordIso2 2 by blast
-   moreover have "r <o r''" using LESS 2 ordLess_ordIso_trans by blast
-   ultimately have "?p \<le>o r''" using cardSuc_least_aux CARD by blast
-   hence False using 2 not_ordLess_ordLeq by blast
+    using assms cardSuc_Card_order unfolding card_order_on_def by blast
+  { assume "r' <o ?p"
+    then obtain r'' where 1: "Field r'' < Field ?p" and 2: "r' =o r'' \<and> r'' <o ?p"
+      using internalize_ordLess[of r' ?p] by blast
+        (*  *)
+    have "Card_order r''" using CARD' Card_order_ordIso2 2 by blast
+    moreover have "r <o r''" using LESS 2 ordLess_ordIso_trans by blast
+    ultimately have "?p \<le>o r''" using cardSuc_least_aux CARD by blast
+    hence False using 2 not_ordLess_ordLeq by blast
   }
   thus ?thesis using 0 ordLess_or_ordLeq by blast
 qed
 
 lemma cardSuc_ordLess_ordLeq:
-assumes CARD: "Card_order r" and CARD': "Card_order r'"
-shows "(r <o r') = (cardSuc r \<le>o r')"
-proof(auto simp add: assms cardSuc_least)
-  assume "cardSuc r \<le>o r'"
-  thus "r <o r'" using assms cardSuc_greater ordLess_ordLeq_trans by blast
-qed
+  assumes CARD: "Card_order r" and CARD': "Card_order r'"
+  shows "(r <o r') = (cardSuc r \<le>o r')"
+proof 
+  show "cardSuc r \<le>o r' \<Longrightarrow> r <o r'"
+    using assms cardSuc_greater ordLess_ordLeq_trans by blast
+qed (auto simp add: assms cardSuc_least)
 
 lemma cardSuc_ordLeq_ordLess:
-assumes CARD: "Card_order r" and CARD': "Card_order r'"
-shows "(r' <o cardSuc r) = (r' \<le>o r)"
-proof-
+  assumes CARD: "Card_order r" and CARD': "Card_order r'"
+  shows "(r' <o cardSuc r) = (r' \<le>o r)"
+proof -
   have "Well_order r \<and> Well_order r'"
-  using assms unfolding card_order_on_def by auto
+    using assms unfolding card_order_on_def by auto
   moreover have "Well_order(cardSuc r)"
-  using assms cardSuc_Card_order card_order_on_def by blast
+    using assms cardSuc_Card_order card_order_on_def by blast
   ultimately show ?thesis
-  using assms cardSuc_ordLess_ordLeq[of r r']
-  not_ordLeq_iff_ordLess[of r r'] not_ordLeq_iff_ordLess[of r' "cardSuc r"] by blast
+    using assms cardSuc_ordLess_ordLeq by (blast dest: not_ordLeq_iff_ordLess)
 qed
 
 lemma cardSuc_mono_ordLeq:
-assumes CARD: "Card_order r" and CARD': "Card_order r'"
-shows "(cardSuc r \<le>o cardSuc r') = (r \<le>o r')"
-using assms cardSuc_ordLeq_ordLess cardSuc_ordLess_ordLeq cardSuc_Card_order by blast
+  assumes CARD: "Card_order r" and CARD': "Card_order r'"
+  shows "(cardSuc r \<le>o cardSuc r') = (r \<le>o r')"
+  using assms cardSuc_ordLeq_ordLess cardSuc_ordLess_ordLeq cardSuc_Card_order by blast
 
 lemma cardSuc_invar_ordIso:
-assumes CARD: "Card_order r" and CARD': "Card_order r'"
-shows "(cardSuc r =o cardSuc r') = (r =o r')"
-proof-
+  assumes CARD: "Card_order r" and CARD': "Card_order r'"
+  shows "(cardSuc r =o cardSuc r') = (r =o r')"
+proof -
   have 0: "Well_order r \<and> Well_order r' \<and> Well_order(cardSuc r) \<and> Well_order(cardSuc r')"
-  using assms by (simp add: card_order_on_well_order_on cardSuc_Card_order)
+    using assms by (simp add: card_order_on_well_order_on cardSuc_Card_order)
   thus ?thesis
-  using ordIso_iff_ordLeq[of r r'] ordIso_iff_ordLeq
-  using cardSuc_mono_ordLeq[of r r'] cardSuc_mono_ordLeq[of r' r] assms by blast
+    using ordIso_iff_ordLeq[of r r'] ordIso_iff_ordLeq
+    using cardSuc_mono_ordLeq[of r r'] cardSuc_mono_ordLeq[of r' r] assms by blast
 qed
 
 lemma card_of_cardSuc_finite:
-"finite(Field(cardSuc |A| )) = finite A"
+  "finite(Field(cardSuc |A| )) = finite A"
 proof
   assume *: "finite (Field (cardSuc |A| ))"
   have 0: "|Field(cardSuc |A| )| =o cardSuc |A|"
-  using card_of_Card_order cardSuc_Card_order card_of_Field_ordIso by blast
+    using card_of_Card_order cardSuc_Card_order card_of_Field_ordIso by blast
   hence "|A| \<le>o |Field(cardSuc |A| )|"
-  using card_of_Card_order[of A] cardSuc_ordLeq[of "|A|"] ordIso_symmetric
-  ordLeq_ordIso_trans by blast
+    using card_of_Card_order[of A] cardSuc_ordLeq[of "|A|"] ordIso_symmetric
+      ordLeq_ordIso_trans by blast
   thus "finite A" using * card_of_ordLeq_finite by blast
 next
   assume "finite A"
   then have "finite ( Field |Pow A| )" unfolding Field_card_of by simp
-  then show "finite (Field (cardSuc |A| ))"
-  proof (rule card_of_ordLeq_finite[OF card_of_mono2, rotated])
-    show "cardSuc |A| \<le>o |Pow A|"
-      by (rule iffD1[OF cardSuc_ordLess_ordLeq card_of_Pow]) (simp_all add: card_of_Card_order)
-  qed
+  moreover
+  have "cardSuc |A| \<le>o |Pow A|"
+    by (rule iffD1[OF cardSuc_ordLess_ordLeq card_of_Pow]) (simp_all add: card_of_Card_order)
+  ultimately show "finite (Field (cardSuc |A| ))"
+    by (blast intro: card_of_ordLeq_finite card_of_mono2)
 qed
 
 lemma cardSuc_finite:
-assumes "Card_order r"
-shows "finite (Field (cardSuc r)) = finite (Field r)"
-proof-
+  assumes "Card_order r"
+  shows "finite (Field (cardSuc r)) = finite (Field r)"
+proof -
   let ?A = "Field r"
   have "|?A| =o r" using assms by (simp add: card_of_Field_ordIso)
   hence "cardSuc |?A| =o cardSuc r" using assms
-  by (simp add: card_of_Card_order cardSuc_invar_ordIso)
+    by (simp add: card_of_Card_order cardSuc_invar_ordIso)
   moreover have "|Field (cardSuc |?A| ) | =o cardSuc |?A|"
-  by (simp add: card_of_card_order_on Field_card_of card_of_Field_ordIso cardSuc_Card_order)
+    by (simp add: card_of_card_order_on Field_card_of card_of_Field_ordIso cardSuc_Card_order)
   moreover
-  {have "|Field (cardSuc r) | =o cardSuc r"
-   using assms by (simp add: card_of_Field_ordIso cardSuc_Card_order)
-   hence "cardSuc r =o |Field (cardSuc r) |"
-   using ordIso_symmetric by blast
+  { have "|Field (cardSuc r) | =o cardSuc r"
+      using assms by (simp add: card_of_Field_ordIso cardSuc_Card_order)
+    hence "cardSuc r =o |Field (cardSuc r) |"
+      using ordIso_symmetric by blast
   }
   ultimately have "|Field (cardSuc |?A| ) | =o |Field (cardSuc r) |"
-  using ordIso_transitive by blast
+    using ordIso_transitive by blast
   hence "finite (Field (cardSuc |?A| )) = finite (Field (cardSuc r))"
-  using card_of_ordIso_finite by blast
+    using card_of_ordIso_finite by blast
   thus ?thesis by (simp only: card_of_cardSuc_finite)
 qed
 
 lemma Field_cardSuc_not_empty:
-assumes "Card_order r"
-shows "Field (cardSuc r) \<noteq> {}"
+  assumes "Card_order r"
+  shows "Field (cardSuc r) \<noteq> {}"
 proof
   assume "Field(cardSuc r) = {}"
   then have "|Field(cardSuc r)| \<le>o r" using assms Card_order_empty[of r] by auto
   then have "cardSuc r \<le>o r" using assms card_of_Field_ordIso
-  cardSuc_Card_order ordIso_symmetric ordIso_ordLeq_trans by blast
+      cardSuc_Card_order ordIso_symmetric ordIso_ordLeq_trans by blast
   then show False using cardSuc_greater not_ordLess_ordLeq assms by blast
 qed
 
@@ -1487,265 +1411,263 @@
   using ordLess_ordIso_trans[OF cardSuc_greater cardSuc_ordIso_card_suc] card_order_on_Card_order by blast
 
 lemma card_of_Plus_ordLess_infinite:
-assumes INF: "\<not>finite C" and
-        LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
-shows "|A <+> B| <o |C|"
+  assumes INF: "\<not>finite C" and LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
+  shows "|A <+> B| <o |C|"
 proof(cases "A = {} \<or> B = {}")
-  assume Case1: "A = {} \<or> B = {}"
+  case True
   hence "|A| =o |A <+> B| \<or> |B| =o |A <+> B|"
-  using card_of_Plus_empty1 card_of_Plus_empty2 by blast
+    using card_of_Plus_empty1 card_of_Plus_empty2 by blast
   hence "|A <+> B| =o |A| \<or> |A <+> B| =o |B|"
-  using ordIso_symmetric[of "|A|"] ordIso_symmetric[of "|B|"] by blast
+    using ordIso_symmetric[of "|A|"] ordIso_symmetric[of "|B|"] by blast
   thus ?thesis using LESS1 LESS2
-       ordIso_ordLess_trans[of "|A <+> B|" "|A|"]
-       ordIso_ordLess_trans[of "|A <+> B|" "|B|"] by blast
+      ordIso_ordLess_trans[of "|A <+> B|" "|A|"]
+      ordIso_ordLess_trans[of "|A <+> B|" "|B|"] by blast
 next
-  assume Case2: "\<not>(A = {} \<or> B = {})"
-  {assume *: "|C| \<le>o |A <+> B|"
-   hence "\<not>finite (A <+> B)" using INF card_of_ordLeq_finite by blast
-   hence 1: "\<not>finite A \<or> \<not>finite B" using finite_Plus by blast
-   {assume Case21: "|A| \<le>o |B|"
-    hence "\<not>finite B" using 1 card_of_ordLeq_finite by blast
-    hence "|A <+> B| =o |B|" using Case2 Case21
-    by (auto simp add: card_of_Plus_infinite)
-    hence False using LESS2 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
-   }
-   moreover
-   {assume Case22: "|B| \<le>o |A|"
-    hence "\<not>finite A" using 1 card_of_ordLeq_finite by blast
-    hence "|A <+> B| =o |A|" using Case2 Case22
-    by (auto simp add: card_of_Plus_infinite)
-    hence False using LESS1 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
-   }
-   ultimately have False using ordLeq_total card_of_Well_order[of A]
-   card_of_Well_order[of B] by blast
-  }
-  thus ?thesis using ordLess_or_ordLeq[of "|A <+> B|" "|C|"]
-  card_of_Well_order[of "A <+> B"] card_of_Well_order[of "C"] by auto
+  case False
+  have False if "|C| \<le>o |A <+> B|"
+  proof -
+    have \<section>: "\<not>finite A \<or> \<not>finite B" 
+      using that INF card_of_ordLeq_finite finite_Plus by blast
+    consider  "|A| \<le>o |B|" | "|B| \<le>o |A|"
+      using ordLeq_total [OF card_of_Well_order card_of_Well_order] by blast
+    then show False
+    proof cases
+      case 1
+      hence "\<not>finite B" using \<section> card_of_ordLeq_finite by blast
+      hence "|A <+> B| =o |B|" using False 1
+        by (auto simp add: card_of_Plus_infinite)
+      thus False using LESS2 not_ordLess_ordLeq that ordLeq_ordIso_trans by blast
+    next
+      case 2
+      hence "\<not>finite A" using \<section> card_of_ordLeq_finite by blast
+      hence "|A <+> B| =o |A|" using False 2
+        by (auto simp add: card_of_Plus_infinite)
+      thus False using LESS1 not_ordLess_ordLeq that ordLeq_ordIso_trans by blast
+    qed
+  qed
+  thus ?thesis 
+    using ordLess_or_ordLeq[of "|A <+> B|" "|C|"] 
+          card_of_Well_order[of "A <+> B"] card_of_Well_order[of "C"] by auto
 qed
 
 lemma card_of_Plus_ordLess_infinite_Field:
-assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
-        LESS1: "|A| <o r" and LESS2: "|B| <o r"
-shows "|A <+> B| <o r"
-proof-
+  assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
+    LESS1: "|A| <o r" and LESS2: "|B| <o r"
+  shows "|A <+> B| <o r"
+proof -
   let ?C  = "Field r"
-  have 1: "r =o |?C| \<and> |?C| =o r" using r card_of_Field_ordIso
-  ordIso_symmetric by blast
+  have 1: "r =o |?C| \<and> |?C| =o r" 
+    using r card_of_Field_ordIso ordIso_symmetric by blast
   hence "|A| <o |?C|"  "|B| <o |?C|"
-  using LESS1 LESS2 ordLess_ordIso_trans by blast+
+    using LESS1 LESS2 ordLess_ordIso_trans by blast+
   hence  "|A <+> B| <o |?C|" using INF
-  card_of_Plus_ordLess_infinite by blast
+      card_of_Plus_ordLess_infinite by blast
   thus ?thesis using 1 ordLess_ordIso_trans by blast
 qed
 
 lemma card_of_Plus_ordLeq_infinite_Field:
-assumes r: "\<not>finite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
-and c: "Card_order r"
-shows "|A <+> B| \<le>o r"
-proof-
+  assumes r: "\<not>finite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
+    and c: "Card_order r"
+  shows "|A <+> B| \<le>o r"
+proof -
   let ?r' = "cardSuc r"
   have "Card_order ?r' \<and> \<not>finite (Field ?r')" using assms
-  by (simp add: cardSuc_Card_order cardSuc_finite)
+    by (simp add: cardSuc_Card_order cardSuc_finite)
   moreover have "|A| <o ?r'" and "|B| <o ?r'" using A B c
-  by (auto simp: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
+    by (auto simp: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
   ultimately have "|A <+> B| <o ?r'"
-  using card_of_Plus_ordLess_infinite_Field by blast
+    using card_of_Plus_ordLess_infinite_Field by blast
   thus ?thesis using c r
-  by (simp add: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
+    by (simp add: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
 qed
 
 lemma card_of_Un_ordLeq_infinite_Field:
-assumes C: "\<not>finite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
-and "Card_order r"
-shows "|A Un B| \<le>o r"
-using assms card_of_Plus_ordLeq_infinite_Field card_of_Un_Plus_ordLeq
-ordLeq_transitive by fast
+  assumes C: "\<not>finite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
+    and "Card_order r"
+  shows "|A Un B| \<le>o r"
+  using assms card_of_Plus_ordLeq_infinite_Field card_of_Un_Plus_ordLeq
+    ordLeq_transitive by fast
 
 lemma card_of_Un_ordLess_infinite:
-assumes INF: "\<not>finite C" and
-        LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
-shows "|A \<union> B| <o |C|"
-using assms card_of_Plus_ordLess_infinite card_of_Un_Plus_ordLeq
-      ordLeq_ordLess_trans by blast
+  assumes INF: "\<not>finite C" and
+    LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
+  shows "|A \<union> B| <o |C|"
+  using assms card_of_Plus_ordLess_infinite card_of_Un_Plus_ordLeq
+    ordLeq_ordLess_trans by blast
 
 lemma card_of_Un_ordLess_infinite_Field:
-assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
-        LESS1: "|A| <o r" and LESS2: "|B| <o r"
-shows "|A Un B| <o r"
-proof-
+  assumes INF: "\<not>finite (Field r)" and r: "Card_order r" and
+    LESS1: "|A| <o r" and LESS2: "|B| <o r"
+  shows "|A Un B| <o r"
+proof -
   let ?C  = "Field r"
   have 1: "r =o |?C| \<and> |?C| =o r" using r card_of_Field_ordIso
-  ordIso_symmetric by blast
+      ordIso_symmetric by blast
   hence "|A| <o |?C|"  "|B| <o |?C|"
-  using LESS1 LESS2 ordLess_ordIso_trans by blast+
+    using LESS1 LESS2 ordLess_ordIso_trans by blast+
   hence  "|A Un B| <o |?C|" using INF
-  card_of_Un_ordLess_infinite by blast
+      card_of_Un_ordLess_infinite by blast
   thus ?thesis using 1 ordLess_ordIso_trans by blast
 qed
 
 subsection \<open>Regular cardinals\<close>
 
 definition cofinal where
-"cofinal A r \<equiv>
- \<forall>a \<in> Field r. \<exists>b \<in> A. a \<noteq> b \<and> (a,b) \<in> r"
+  "cofinal A r \<equiv> \<forall>a \<in> Field r. \<exists>b \<in> A. a \<noteq> b \<and> (a,b) \<in> r"
 
 definition regularCard where
-"regularCard r \<equiv>
- \<forall>K. K \<le> Field r \<and> cofinal K r \<longrightarrow> |K| =o r"
+  "regularCard r \<equiv> \<forall>K. K \<le> Field r \<and> cofinal K r \<longrightarrow> |K| =o r"
 
 definition relChain where
-"relChain r As \<equiv>
- \<forall>i j. (i,j) \<in> r \<longrightarrow> As i \<le> As j"
+  "relChain r As \<equiv> \<forall>i j. (i,j) \<in> r \<longrightarrow> As i \<le> As j"
 
 lemma regularCard_UNION:
-assumes r: "Card_order r"   "regularCard r"
-and As: "relChain r As"
-and Bsub: "B \<le> (\<Union>i \<in> Field r. As i)"
-and cardB: "|B| <o r"
-shows "\<exists>i \<in> Field r. B \<le> As i"
-proof-
+  assumes r: "Card_order r"   "regularCard r"
+    and As: "relChain r As"
+    and Bsub: "B \<le> (\<Union>i \<in> Field r. As i)"
+    and cardB: "|B| <o r"
+  shows "\<exists>i \<in> Field r. B \<le> As i"
+proof -
   let ?phi = "\<lambda>b j. j \<in> Field r \<and> b \<in> As j"
   have "\<forall>b\<in>B. \<exists>j. ?phi b j" using Bsub by blast
   then obtain f where f: "\<And>b. b \<in> B \<Longrightarrow> ?phi b (f b)"
-  using bchoice[of B ?phi] by blast
+    using bchoice[of B ?phi] by blast
   let ?K = "f ` B"
   {assume 1: "\<And>i. i \<in> Field r \<Longrightarrow> \<not> B \<le> As i"
-   have 2: "cofinal ?K r"
-   unfolding cofinal_def proof auto
-     fix i assume i: "i \<in> Field r"
-     with 1 obtain b where b: "b \<in> B \<and> b \<notin> As i" by blast
-     hence "i \<noteq> f b \<and> \<not> (f b,i) \<in> r"
-     using As f unfolding relChain_def by auto
-     hence "i \<noteq> f b \<and> (i, f b) \<in> r" using r
-     unfolding card_order_on_def well_order_on_def linear_order_on_def
-     total_on_def using i f b by auto
-     with b show "\<exists>b\<in>B. i \<noteq> f b \<and> (i, f b) \<in> r" by blast
-   qed
-   moreover have "?K \<le> Field r" using f by blast
-   ultimately have "|?K| =o r" using 2 r unfolding regularCard_def by blast
-   moreover
-   {
-    have "|?K| <=o |B|" using card_of_image .
-    hence "|?K| <o r" using cardB ordLeq_ordLess_trans by blast
-   }
-   ultimately have False using not_ordLess_ordIso by blast
+    have 2: "cofinal ?K r"
+      unfolding cofinal_def 
+    proof (intro strip)
+      fix i assume i: "i \<in> Field r"
+      with 1 obtain b where b: "b \<in> B \<and> b \<notin> As i" by blast
+      hence "i \<noteq> f b \<and> \<not> (f b,i) \<in> r"
+        using As f unfolding relChain_def by auto
+      hence "i \<noteq> f b \<and> (i, f b) \<in> r" using r
+        unfolding card_order_on_def well_order_on_def linear_order_on_def
+          total_on_def using i f b by auto
+      with b show "\<exists>b \<in> f`B. i \<noteq> b \<and> (i,b) \<in> r" by blast
+    qed
+    moreover have "?K \<le> Field r" using f by blast
+    ultimately have "|?K| =o r" using 2 r unfolding regularCard_def by blast
+    moreover
+    have "|?K| <o r" using cardB ordLeq_ordLess_trans card_of_image by blast
+    ultimately have False using not_ordLess_ordIso by blast
   }
   thus ?thesis by blast
 qed
 
 lemma infinite_cardSuc_regularCard:
-assumes r_inf: "\<not>finite (Field r)" and r_card: "Card_order r"
-shows "regularCard (cardSuc r)"
-proof-
+  assumes r_inf: "\<not>finite (Field r)" and r_card: "Card_order r"
+  shows "regularCard (cardSuc r)"
+proof -
   let ?r' = "cardSuc r"
-  have r': "Card_order ?r'"
-  "!! p. Card_order p \<longrightarrow> (p \<le>o r) = (p <o ?r')"
-  using r_card by (auto simp: cardSuc_Card_order cardSuc_ordLeq_ordLess)
+  have r': "Card_order ?r'" "\<And>p. Card_order p \<longrightarrow> (p \<le>o r) = (p <o ?r')"
+    using r_card by (auto simp: cardSuc_Card_order cardSuc_ordLeq_ordLess)
   show ?thesis
-  unfolding regularCard_def proof auto
+    unfolding regularCard_def proof auto
     fix K assume 1: "K \<le> Field ?r'" and 2: "cofinal K ?r'"
     hence "|K| \<le>o |Field ?r'|" by (simp only: card_of_mono1)
     also have 22: "|Field ?r'| =o ?r'"
-    using r' by (simp add: card_of_Field_ordIso[of ?r'])
+      using r' by (simp add: card_of_Field_ordIso[of ?r'])
     finally have "|K| \<le>o ?r'" .
     moreover
-    {let ?L = "\<Union> j \<in> K. underS ?r' j"
-     let ?J = "Field r"
-     have rJ: "r =o |?J|"
-     using r_card card_of_Field_ordIso ordIso_symmetric by blast
-     assume "|K| <o ?r'"
-     hence "|K| <=o r" using r' card_of_Card_order[of K] by blast
-     hence "|K| \<le>o |?J|" using rJ ordLeq_ordIso_trans by blast
-     moreover
-     {have "\<forall>j\<in>K. |underS ?r' j| <o ?r'"
-      using r' 1 by (auto simp: card_of_underS)
-      hence "\<forall>j\<in>K. |underS ?r' j| \<le>o r"
-      using r' card_of_Card_order by blast
-      hence "\<forall>j\<in>K. |underS ?r' j| \<le>o |?J|"
-      using rJ ordLeq_ordIso_trans by blast
-     }
-     ultimately have "|?L| \<le>o |?J|"
-     using r_inf card_of_UNION_ordLeq_infinite by blast
-     hence "|?L| \<le>o r" using rJ ordIso_symmetric ordLeq_ordIso_trans by blast
-     hence "|?L| <o ?r'" using r' card_of_Card_order by blast
-     moreover
-     {
-      have "Field ?r' \<le> ?L"
-      using 2 unfolding underS_def cofinal_def by auto
-      hence "|Field ?r'| \<le>o |?L|" by (simp add: card_of_mono1)
-      hence "?r' \<le>o |?L|"
-      using 22 ordIso_ordLeq_trans ordIso_symmetric by blast
-     }
-     ultimately have "|?L| <o |?L|" using ordLess_ordLeq_trans by blast
-     hence False using ordLess_irreflexive by blast
+    { let ?L = "\<Union> j \<in> K. underS ?r' j"
+      let ?J = "Field r"
+      have rJ: "r =o |?J|"
+        using r_card card_of_Field_ordIso ordIso_symmetric by blast
+      assume "|K| <o ?r'"
+      hence "|K| \<le>o r" using r' card_of_Card_order[of K] by blast
+      hence "|K| \<le>o |?J|" using rJ ordLeq_ordIso_trans by blast
+      moreover
+      {have "\<forall>j\<in>K. |underS ?r' j| <o ?r'"
+          using r' 1 by (auto simp: card_of_underS)
+        hence "\<forall>j\<in>K. |underS ?r' j| \<le>o r"
+          using r' card_of_Card_order by blast
+        hence "\<forall>j\<in>K. |underS ?r' j| \<le>o |?J|"
+          using rJ ordLeq_ordIso_trans by blast
+      }
+      ultimately have "|?L| \<le>o |?J|"
+        using r_inf card_of_UNION_ordLeq_infinite by blast
+      hence "|?L| \<le>o r" using rJ ordIso_symmetric ordLeq_ordIso_trans by blast
+      hence "|?L| <o ?r'" using r' card_of_Card_order by blast
+      moreover
+      {
+        have "Field ?r' \<le> ?L"
+          using 2 unfolding underS_def cofinal_def by auto
+        hence "|Field ?r'| \<le>o |?L|" by (simp add: card_of_mono1)
+        hence "?r' \<le>o |?L|"
+          using 22 ordIso_ordLeq_trans ordIso_symmetric by blast
+      }
+      ultimately have "|?L| <o |?L|" using ordLess_ordLeq_trans by blast
+      hence False using ordLess_irreflexive by blast
     }
     ultimately show "|K| =o ?r'"
-    unfolding ordLeq_iff_ordLess_or_ordIso by blast
+      unfolding ordLeq_iff_ordLess_or_ordIso by blast
   qed
 qed
 
 lemma cardSuc_UNION:
-assumes r: "Card_order r" and "\<not>finite (Field r)"
-and As: "relChain (cardSuc r) As"
-and Bsub: "B \<le> (\<Union> i \<in> Field (cardSuc r). As i)"
-and cardB: "|B| <=o r"
-shows "\<exists>i \<in> Field (cardSuc r). B \<le> As i"
-proof-
+  assumes r: "Card_order r" and "\<not>finite (Field r)"
+    and As: "relChain (cardSuc r) As"
+    and Bsub: "B \<le> (\<Union> i \<in> Field (cardSuc r). As i)"
+    and cardB: "|B| \<le>o r"
+  shows "\<exists>i \<in> Field (cardSuc r). B \<le> As i"
+proof -
   let ?r' = "cardSuc r"
   have "Card_order ?r' \<and> |B| <o ?r'"
-  using r cardB cardSuc_ordLeq_ordLess cardSuc_Card_order
-  card_of_Card_order by blast
+    using r cardB cardSuc_ordLeq_ordLess cardSuc_Card_order
+      card_of_Card_order by blast
   moreover have "regularCard ?r'"
-  using assms by(simp add: infinite_cardSuc_regularCard)
+    using assms by(simp add: infinite_cardSuc_regularCard)
   ultimately show ?thesis
-  using As Bsub cardB regularCard_UNION by blast
+    using As Bsub cardB regularCard_UNION by blast
 qed
 
 
 subsection \<open>Others\<close>
 
 lemma card_of_Func_Times:
-"|Func (A \<times> B) C| =o |Func A (Func B C)|"
-unfolding card_of_ordIso[symmetric]
-using bij_betw_curr by blast
+  "|Func (A \<times> B) C| =o |Func A (Func B C)|"
+  unfolding card_of_ordIso[symmetric]
+  using bij_betw_curr by blast
 
 lemma card_of_Pow_Func:
-"|Pow A| =o |Func A (UNIV::bool set)|"
-proof-
-  define F where [abs_def]: "F A' a =
+  "|Pow A| =o |Func A (UNIV::bool set)|"
+proof -
+  define F where [abs_def]: "F A' a \<equiv>
     (if a \<in> A then (if a \<in> A' then True else False) else undefined)" for A' a
   have "bij_betw F (Pow A) (Func A (UNIV::bool set))"
-  unfolding bij_betw_def inj_on_def proof (intro ballI impI conjI)
+    unfolding bij_betw_def inj_on_def proof (intro ballI impI conjI)
     fix A1 A2 assume "A1 \<in> Pow A" "A2 \<in> Pow A" "F A1 = F A2"
     thus "A1 = A2" unfolding F_def Pow_def fun_eq_iff by (auto split: if_split_asm)
   next
     show "F ` Pow A = Func A UNIV"
     proof safe
       fix f assume f: "f \<in> Func A (UNIV::bool set)"
-      show "f \<in> F ` Pow A" unfolding image_def mem_Collect_eq proof(intro bexI)
-        let ?A1 = "{a \<in> A. f a = True}"
-        show "f = F ?A1"
-          unfolding F_def apply(rule ext)
-          using f unfolding Func_def mem_Collect_eq by auto
+      show "f \<in> F ` Pow A" 
+        unfolding image_iff 
+      proof
+        show "f = F {a \<in> A. f a = True}"
+          using f unfolding Func_def F_def by force
       qed auto
-    qed(unfold Func_def mem_Collect_eq F_def, auto)
+    qed(unfold Func_def F_def, auto)
   qed
   thus ?thesis unfolding card_of_ordIso[symmetric] by blast
 qed
 
 lemma card_of_Func_UNIV:
-"|Func (UNIV::'a set) (B::'b set)| =o |{f::'a \<Rightarrow> 'b. range f \<subseteq> B}|"
-apply(rule ordIso_symmetric) proof(intro card_of_ordIsoI)
+  "|Func (UNIV::'a set) (B::'b set)| =o |{f::'a \<Rightarrow> 'b. range f \<subseteq> B}|"
+proof -
   let ?F = "\<lambda> f (a::'a). ((f a)::'b)"
-  show "bij_betw ?F {f. range f \<subseteq> B} (Func UNIV B)"
-  unfolding bij_betw_def inj_on_def proof safe
+  have "bij_betw ?F {f. range f \<subseteq> B} (Func UNIV B)"
+    unfolding bij_betw_def inj_on_def 
+  proof safe
     fix h :: "'a \<Rightarrow> 'b" assume h: "h \<in> Func UNIV B"
-    hence "\<forall> a. \<exists> b. h a = b" unfolding Func_def by auto
     then obtain f where f: "\<forall> a. h a = f a" by blast
     hence "range f \<subseteq> B" using h unfolding Func_def by auto
     thus "h \<in> (\<lambda>f a. f a) ` {f. range f \<subseteq> B}" using f by auto
   qed(unfold Func_def fun_eq_iff, auto)
+  then show ?thesis
+    by (blast intro: ordIso_symmetric card_of_ordIsoI)
 qed
 
 lemma Func_Times_Range:
@@ -1774,8 +1696,8 @@
 subsection \<open>Regular vs. stable cardinals\<close>
 
 definition stable :: "'a rel \<Rightarrow> bool"
-where
-"stable r \<equiv> \<forall>(A::'a set) (F :: 'a \<Rightarrow> 'a set).
+  where
+    "stable r \<equiv> \<forall>(A::'a set) (F :: 'a \<Rightarrow> 'a set).
                |A| <o r \<and> (\<forall>a \<in> A. |F a| <o r)
                \<longrightarrow> |SIGMA a : A. F a| <o r"
 
@@ -1793,14 +1715,13 @@
     {fix a assume a: "a \<in> A"
       define L where "L = {(a,u) | u. u \<in> F a}"
       have fL: "f ` L \<subseteq> Field r" using f a unfolding L_def by auto
-      have "|L| =o |F a|" unfolding L_def card_of_ordIso[symmetric]
-        apply(rule exI[of _ snd]) unfolding bij_betw_def inj_on_def by (auto simp: image_def)
+      have "bij_betw snd {(a, u) |u. u \<in> F a} (F a)"
+        unfolding bij_betw_def inj_on_def by (auto simp: image_def)
+      then have "|L| =o |F a|" unfolding L_def card_of_ordIso[symmetric] by blast
       hence "|L| <o r" using F a ordIso_ordLess_trans[of "|L|" "|F a|"] unfolding L_def by auto
       hence "|f ` L| <o r" using ordLeq_ordLess_trans[OF card_of_image, of "L"] unfolding L_def by auto
       hence "\<not> cofinal (f ` L) r" using reg fL unfolding regularCard_def
-        apply simp
-        apply (drule not_ordLess_ordIso)
-        by auto
+        by (force simp add: dest: not_ordLess_ordIso)
       then obtain k where k: "k \<in> Field r" and "\<forall> l \<in> L. \<not> (f l \<noteq> k \<and> (k, f l) \<in> r)"
         unfolding cofinal_def image_def by auto
       hence "\<exists> k \<in> Field r. \<forall> l \<in> L. (f l, k) \<in> r"
@@ -1816,11 +1737,13 @@
     hence 1: "Field r \<subseteq> (\<Union>a \<in> A. under r (g a))"
       using f[symmetric] unfolding under_def image_def by auto
     have gA: "g ` A \<subseteq> Field r" using gg j0 unfolding Field_def g_def by auto
-    moreover have "cofinal (g ` A) r" unfolding cofinal_def proof safe
+    moreover have "cofinal (g ` A) r" unfolding cofinal_def 
+    proof safe
       fix i assume "i \<in> Field r"
       then obtain j where ij: "(i,j) \<in> r" "i \<noteq> j" using cr ir infinite_Card_order_limit by fast
       hence "j \<in> Field r" using card_order_on_def cr well_order_on_domain by fast
-      then obtain a where a: "a \<in> A" and j: "(j, g a) \<in> r" using 1 unfolding under_def by auto
+      then obtain a where a: "a \<in> A" and j: "(j, g a) \<in> r" 
+        using 1 unfolding under_def by auto
       hence "(i, g a) \<in> r" using ij wo_rel.TRANS[OF r] unfolding trans_def by blast
       moreover have "i \<noteq> g a"
         using ij j r unfolding wo_rel_def unfolding well_order_on_def linear_order_on_def
@@ -1836,40 +1759,40 @@
 qed
 
 lemma stable_regularCard:
-assumes cr: "Card_order r" and ir: "\<not>finite (Field r)" and st: "stable r"
-shows "regularCard r"
-unfolding regularCard_def proof safe
+  assumes cr: "Card_order r" and ir: "\<not>finite (Field r)" and st: "stable r"
+  shows "regularCard r"
+  unfolding regularCard_def proof safe
   fix K assume K: "K \<subseteq> Field r" and cof: "cofinal K r"
   have "|K| \<le>o r" using K card_of_Field_ordIso card_of_mono1 cr ordLeq_ordIso_trans by blast
   moreover
   {assume Kr: "|K| <o r"
-   have x: "\<And>a. a \<in> Field r \<Longrightarrow> \<exists>b. b \<in> K \<and> a \<noteq> b \<and> (a, b) \<in> r" using cof unfolding cofinal_def by blast
-   then obtain f where "\<And>a. a \<in> Field r \<Longrightarrow> f a = (SOME b. b \<in> K \<and> a \<noteq> b \<and> (a, b) \<in> r)" by simp
-   then have "\<forall>a\<in>Field r. f a \<in> K \<and> a \<noteq> f a \<and> (a, f a) \<in> r" using someI_ex[OF x] by simp
-   hence "Field r \<subseteq> (\<Union>a \<in> K. underS r a)" unfolding underS_def by auto
-   hence "r \<le>o |\<Union>a \<in> K. underS r a|"
-     using cr Card_order_iff_ordLeq_card_of card_of_mono1 ordLeq_transitive by blast
-   also have "|\<Union>a \<in> K. underS r a| \<le>o |SIGMA a: K. underS r a|" by (rule card_of_UNION_Sigma)
-   also
-   {have "\<forall> a \<in> K. |underS r a| <o r" using K card_of_underS[OF cr] subsetD by auto
-    hence "|SIGMA a: K. underS r a| <o r" using st Kr unfolding stable_def by auto
-   }
-   finally have "r <o r" .
-   hence False using ordLess_irreflexive by blast
+    have x: "\<And>a. a \<in> Field r \<Longrightarrow> \<exists>b. b \<in> K \<and> a \<noteq> b \<and> (a, b) \<in> r" using cof unfolding cofinal_def by blast
+    then obtain f where "\<And>a. a \<in> Field r \<Longrightarrow> f a = (SOME b. b \<in> K \<and> a \<noteq> b \<and> (a, b) \<in> r)" by simp
+    then have "\<forall>a\<in>Field r. f a \<in> K \<and> a \<noteq> f a \<and> (a, f a) \<in> r" using someI_ex[OF x] by simp
+    hence "Field r \<subseteq> (\<Union>a \<in> K. underS r a)" unfolding underS_def by auto
+    hence "r \<le>o |\<Union>a \<in> K. underS r a|"
+      using cr Card_order_iff_ordLeq_card_of card_of_mono1 ordLeq_transitive by blast
+    also have "|\<Union>a \<in> K. underS r a| \<le>o |SIGMA a: K. underS r a|" by (rule card_of_UNION_Sigma)
+    also
+    {have "\<forall> a \<in> K. |underS r a| <o r" using K card_of_underS[OF cr] subsetD by auto
+      hence "|SIGMA a: K. underS r a| <o r" using st Kr unfolding stable_def by auto
+    }
+    finally have "r <o r" .
+    hence False using ordLess_irreflexive by blast
   }
   ultimately show "|K| =o r" using ordLeq_iff_ordLess_or_ordIso by blast
 qed
 
 lemma internalize_card_of_ordLess:
-"( |A| <o r) = (\<exists>B < Field r. |A| =o |B| \<and> |B| <o r)"
+  "( |A| <o r) = (\<exists>B < Field r. |A| =o |B| \<and> |B| <o r)"
 proof
   assume "|A| <o r"
   then obtain p where 1: "Field p < Field r \<and> |A| =o p \<and> p <o r"
-  using internalize_ordLess[of "|A|" r] by blast
+    using internalize_ordLess[of "|A|" r] by blast
   hence "Card_order p" using card_of_Card_order Card_order_ordIso2 by blast
   hence "|Field p| =o p" using card_of_Field_ordIso by blast
   hence "|A| =o |Field p| \<and> |Field p| <o r"
-  using 1 ordIso_equivalence ordIso_ordLess_trans by blast
+    using 1 ordIso_equivalence ordIso_ordLess_trans by blast
   thus "\<exists>B < Field r. |A| =o |B| \<and> |B| <o r" using 1 by blast
 next
   assume "\<exists>B < Field r. |A| =o |B| \<and> |B| <o r"
@@ -1877,62 +1800,61 @@
 qed
 
 lemma card_of_Sigma_cong1:
-assumes "\<forall>i \<in> I. |A i| =o |B i|"
-shows "|SIGMA i : I. A i| =o |SIGMA i : I. B i|"
-using assms by (auto simp add: card_of_Sigma_mono1 ordIso_iff_ordLeq)
+  assumes "\<forall>i \<in> I. |A i| =o |B i|"
+  shows "|SIGMA i : I. A i| =o |SIGMA i : I. B i|"
+  using assms by (auto simp add: card_of_Sigma_mono1 ordIso_iff_ordLeq)
 
 lemma card_of_Sigma_cong2:
-assumes "bij_betw f (I::'i set) (J::'j set)"
-shows "|SIGMA i : I. (A::'j \<Rightarrow> 'a set) (f i)| =o |SIGMA j : J. A j|"
-proof-
+  assumes "bij_betw f (I::'i set) (J::'j set)"
+  shows "|SIGMA i : I. (A::'j \<Rightarrow> 'a set) (f i)| =o |SIGMA j : J. A j|"
+proof -
   let ?LEFT = "SIGMA i : I. A (f i)"
   let ?RIGHT = "SIGMA j : J. A j"
-  obtain u where u_def: "u = (\<lambda>(i::'i,a::'a). (f i,a))" by blast
+  define u where "u \<equiv> \<lambda>(i::'i,a::'a). (f i,a)"
   have "bij_betw u ?LEFT ?RIGHT"
-  using assms unfolding u_def bij_betw_def inj_on_def by auto
+    using assms unfolding u_def bij_betw_def inj_on_def by auto
   thus ?thesis using card_of_ordIso by blast
 qed
 
 lemma card_of_Sigma_cong:
-assumes BIJ: "bij_betw f I J" and
-        ISO: "\<forall>j \<in> J. |A j| =o |B j|"
-shows "|SIGMA i : I. A (f i)| =o |SIGMA j : J. B j|"
-proof-
+  assumes BIJ: "bij_betw f I J" and ISO: "\<forall>j \<in> J. |A j| =o |B j|"
+  shows "|SIGMA i : I. A (f i)| =o |SIGMA j : J. B j|"
+proof -
   have "\<forall>i \<in> I. |A(f i)| =o |B(f i)|"
-  using ISO BIJ unfolding bij_betw_def by blast
+    using ISO BIJ unfolding bij_betw_def by blast
   hence "|SIGMA i : I. A (f i)| =o |SIGMA i : I. B (f i)|" by (rule card_of_Sigma_cong1)
   moreover have "|SIGMA i : I. B (f i)| =o |SIGMA j : J. B j|"
-  using BIJ card_of_Sigma_cong2 by blast
+    using BIJ card_of_Sigma_cong2 by blast
   ultimately show ?thesis using ordIso_transitive by blast
 qed
 
 (* Note that below the types of A and F are now unconstrained: *)
 lemma stable_elim:
-assumes ST: "stable r" and A_LESS: "|A| <o r" and
-        F_LESS: "\<And> a. a \<in> A \<Longrightarrow> |F a| <o r"
-shows "|SIGMA a : A. F a| <o r"
-proof-
+  assumes ST: "stable r" and A_LESS: "|A| <o r" and
+    F_LESS: "\<And> a. a \<in> A \<Longrightarrow> |F a| <o r"
+  shows "|SIGMA a : A. F a| <o r"
+proof -
   obtain A' where 1: "A' < Field r \<and> |A'| <o r" and 2: " |A| =o |A'|"
-  using internalize_card_of_ordLess[of A r] A_LESS by blast
+    using internalize_card_of_ordLess[of A r] A_LESS by blast
   then obtain G where 3: "bij_betw G A' A"
-  using card_of_ordIso  ordIso_symmetric by blast
-  (*  *)
+    using card_of_ordIso  ordIso_symmetric by blast
+      (*  *)
   {fix a assume "a \<in> A"
-   hence "\<exists>B'. B' \<le> Field r \<and> |F a| =o |B'| \<and> |B'| <o r"
-   using internalize_card_of_ordLess[of "F a" r] F_LESS by blast
+    hence "\<exists>B'. B' \<le> Field r \<and> |F a| =o |B'| \<and> |B'| <o r"
+      using internalize_card_of_ordLess[of "F a" r] F_LESS by blast
   }
   then obtain F' where
-  temp: "\<forall>a \<in> A. F' a \<le> Field r \<and> |F a| =o |F' a| \<and> |F' a| <o r"
-  using bchoice[of A "\<lambda> a B'. B' \<le> Field r \<and> |F a| =o |B'| \<and> |B'| <o r"] by blast
+    temp: "\<forall>a \<in> A. F' a \<le> Field r \<and> |F a| =o |F' a| \<and> |F' a| <o r"
+    using bchoice[of A "\<lambda> a B'. B' \<le> Field r \<and> |F a| =o |B'| \<and> |B'| <o r"] by blast
   hence 4: "\<forall>a \<in> A. F' a \<le> Field r \<and> |F' a| <o r" by auto
   have 5: "\<forall>a \<in> A. |F' a| =o |F a|" using temp ordIso_symmetric by auto
-  (*  *)
+      (*  *)
   have "\<forall>a' \<in> A'. F'(G a') \<le> Field r \<and> |F'(G a')| <o r"
-  using 3 4 bij_betw_ball[of G A' A] by auto
+    using 3 4 bij_betw_ball[of G A' A] by auto
   hence "|SIGMA a' : A'. F'(G a')| <o r"
-  using ST 1 unfolding stable_def by auto
+    using ST 1 unfolding stable_def by auto
   moreover have "|SIGMA a' : A'. F'(G a')| =o |SIGMA a : A. F a|"
-  using card_of_Sigma_cong[of G A' A F' F] 5 3 by blast
+    using card_of_Sigma_cong[of G A' A F' F] 5 3 by blast
   ultimately show ?thesis using ordIso_symmetric ordIso_ordLess_trans by blast
 qed
 
@@ -1941,57 +1863,51 @@
   fix A :: "'a set" and F :: "'a \<Rightarrow> 'a set"
   assume "|A| <o natLeq" and "\<forall>a\<in>A. |F a| <o natLeq"
   hence "finite A \<and> (\<forall>a \<in> A. finite(F a))"
-  by (auto simp add: finite_iff_ordLess_natLeq)
+    by (auto simp add: finite_iff_ordLess_natLeq)
   hence "finite(Sigma A F)" by (simp only: finite_SigmaI[of A F])
   thus "|Sigma A F | <o natLeq"
-  by (auto simp add: finite_iff_ordLess_natLeq)
+    by (auto simp add: finite_iff_ordLess_natLeq)
 qed
 
 corollary regularCard_natLeq: "regularCard natLeq"
-using stable_regularCard[OF natLeq_Card_order _ stable_natLeq] Field_natLeq by simp
+  using stable_regularCard[OF natLeq_Card_order _ stable_natLeq] Field_natLeq by simp
 
 lemma stable_ordIso1:
-assumes ST: "stable r" and ISO: "r' =o r"
-shows "stable r'"
+  assumes ST: "stable r" and ISO: "r' =o r"
+  shows "stable r'"
 proof(unfold stable_def, auto)
   fix A::"'b set" and F::"'b \<Rightarrow> 'b set"
   assume "|A| <o r'" and "\<forall>a \<in> A. |F a| <o r'"
   hence "( |A| <o r) \<and> (\<forall>a \<in> A. |F a| <o r)"
-  using ISO ordLess_ordIso_trans by blast
+    using ISO ordLess_ordIso_trans by blast
   hence "|SIGMA a : A. F a| <o r" using assms stable_elim by blast
   thus "|SIGMA a : A. F a| <o r'"
-  using ISO ordIso_symmetric ordLess_ordIso_trans by blast
+    using ISO ordIso_symmetric ordLess_ordIso_trans by blast
 qed
 
 lemma stable_UNION:
-assumes ST: "stable r" and A_LESS: "|A| <o r" and
-        F_LESS: "\<And> a. a \<in> A \<Longrightarrow> |F a| <o r"
-shows "|\<Union>a \<in> A. F a| <o r"
-proof-
-  have "|\<Union>a \<in> A. F a| \<le>o |SIGMA a : A. F a|"
-  using card_of_UNION_Sigma by blast
-  thus ?thesis using assms stable_elim ordLeq_ordLess_trans by blast
-qed
+  assumes "stable r" and "|A| <o r" and "\<And> a. a \<in> A \<Longrightarrow> |F a| <o r"
+  shows "|\<Union>a \<in> A. F a| <o r"
+  using assms card_of_UNION_Sigma stable_elim ordLeq_ordLess_trans by blast
 
 corollary card_of_UNION_ordLess_infinite:
-assumes INF: "stable |B|" and
-        LEQ_I: "|I| <o |B|" and LEQ: "\<forall>i \<in> I. |A i| <o |B|"
-shows "|\<Union>i \<in> I. A i| <o |B|"
+  assumes "stable |B|" and "|I| <o |B|" and "\<forall>i \<in> I. |A i| <o |B|"
+  shows "|\<Union>i \<in> I. A i| <o |B|"
   using assms stable_UNION by blast
 
 corollary card_of_UNION_ordLess_infinite_Field:
-assumes ST: "stable r" and r: "Card_order r" and
-        LEQ_I: "|I| <o r" and LEQ: "\<forall>i \<in> I. |A i| <o r"
-shows "|\<Union>i \<in> I. A i| <o r"
-proof-
+  assumes ST: "stable r" and r: "Card_order r" and
+    LEQ_I: "|I| <o r" and LEQ: "\<forall>i \<in> I. |A i| <o r"
+  shows "|\<Union>i \<in> I. A i| <o r"
+proof -
   let ?B  = "Field r"
   have 1: "r =o |?B| \<and> |?B| =o r" using r card_of_Field_ordIso
-  ordIso_symmetric by blast
+      ordIso_symmetric by blast
   hence "|I| <o |?B|"  "\<forall>i \<in> I. |A i| <o |?B|"
     using LEQ_I LEQ ordLess_ordIso_trans by blast+
   moreover have "stable |?B|" using stable_ordIso1 ST 1 by blast
   ultimately have  "|\<Union>i \<in> I. A i| <o |?B|" using LEQ
-  card_of_UNION_ordLess_infinite by blast
+      card_of_UNION_ordLess_infinite by blast
   thus ?thesis using 1 ordLess_ordIso_trans by blast
 qed