src/HOL/NewNumberTheory/Residues.thy
changeset 31719 29f5b20e8ee8
child 31727 2621a957d417
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/NewNumberTheory/Residues.thy	Fri Jun 19 18:33:10 2009 +0200
@@ -0,0 +1,474 @@
+(*  Title:      HOL/Library/Residues.thy
+    ID:         
+    Author:     Jeremy Avigad
+
+    An algebraic treatment of residue rings, and resulting proofs of
+    Euler's theorem and Wilson's theorem. 
+*)
+
+header {* Residue rings *}
+
+theory Residues
+imports
+   UniqueFactorization
+   Binomial
+   MiscAlgebra
+begin
+
+
+(*
+ 
+  A locale for residue rings
+
+*)
+
+constdefs 
+  residue_ring :: "int => int ring"
+  "residue_ring m == (| 
+    carrier =       {0..m - 1}, 
+    mult =          (%x y. (x * y) mod m),
+    one =           1,
+    zero =          0,
+    add =           (%x y. (x + y) mod m) |)"
+
+locale residues =
+  fixes m :: int and R (structure)
+  assumes m_gt_one: "m > 1"
+  defines "R == residue_ring m"
+
+context residues begin
+
+lemma abelian_group: "abelian_group R"
+  apply (insert m_gt_one)
+  apply (rule abelian_groupI)
+  apply (unfold R_def residue_ring_def)
+  apply (auto simp add: mod_pos_pos_trivial mod_add_right_eq [symmetric]
+    add_ac)
+  apply (case_tac "x = 0")
+  apply force
+  apply (subgoal_tac "(x + (m - x)) mod m = 0")
+  apply (erule bexI)
+  apply auto
+done
+
+lemma comm_monoid: "comm_monoid R"
+  apply (insert m_gt_one)
+  apply (unfold R_def residue_ring_def)
+  apply (rule comm_monoidI)
+  apply auto
+  apply (subgoal_tac "x * y mod m * z mod m = z * (x * y mod m) mod m")
+  apply (erule ssubst)
+  apply (subst zmod_zmult1_eq [symmetric])+
+  apply (simp_all only: mult_ac)
+done
+
+lemma cring: "cring R"
+  apply (rule cringI)
+  apply (rule abelian_group)
+  apply (rule comm_monoid)
+  apply (unfold R_def residue_ring_def, auto)
+  apply (subst mod_add_eq [symmetric])
+  apply (subst mult_commute)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (simp add: ring_simps)
+done
+
+end
+
+sublocale residues < cring
+  by (rule cring)
+
+
+context residues begin
+
+(* These lemmas translate back and forth between internal and 
+   external concepts *)
+
+lemma res_carrier_eq: "carrier R = {0..m - 1}"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_zero_eq: "\<zero> = 0"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_one_eq: "\<one> = 1"
+  by (unfold R_def residue_ring_def units_of_def residue_ring_def, auto)
+
+lemma res_units_eq: "Units R = { x. 0 < x & x < m & coprime x m}"
+  apply (insert m_gt_one)
+  apply (unfold Units_def R_def residue_ring_def)
+  apply auto
+  apply (subgoal_tac "x ~= 0")
+  apply auto
+  apply (rule int_invertible_coprime)
+  apply (subgoal_tac "x ~= 0")
+  apply auto
+  apply (subst (asm) int_coprime_iff_invertible')
+  apply (rule m_gt_one)
+  apply (auto simp add: cong_int_def mult_commute)
+done
+
+lemma res_neg_eq: "\<ominus> x = (- x) mod m"
+  apply (insert m_gt_one)
+  apply (unfold R_def a_inv_def m_inv_def residue_ring_def)
+  apply auto
+  apply (rule the_equality)
+  apply auto
+  apply (subst mod_add_right_eq [symmetric])
+  apply auto
+  apply (subst mod_add_left_eq [symmetric])
+  apply auto
+  apply (subgoal_tac "y mod m = - x mod m")
+  apply simp
+  apply (subst zmod_eq_dvd_iff)
+  apply auto
+done
+
+lemma finite [iff]: "finite(carrier R)"
+  by (subst res_carrier_eq, auto)
+
+lemma finite_Units [iff]: "finite(Units R)"
+  by (subst res_units_eq, auto)
+
+(* The function a -> a mod m maps the integers to the 
+   residue classes. The following lemmas show that this mapping 
+   respects addition and multiplication on the integers. *)
+
+lemma mod_in_carrier [iff]: "a mod m : carrier R"
+  apply (unfold res_carrier_eq)
+  apply (insert m_gt_one, auto)
+done
+
+lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
+  by (unfold R_def residue_ring_def, auto, arith)
+
+lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
+  apply (unfold R_def residue_ring_def, auto)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (subst mult_commute)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (subst mult_commute)
+  apply auto
+done  
+
+lemma zero_cong: "\<zero> = 0"
+  apply (unfold R_def residue_ring_def, auto)
+done
+
+lemma one_cong: "\<one> = 1 mod m"
+  apply (insert m_gt_one)
+  apply (unfold R_def residue_ring_def, auto)
+done
+
+(* revise algebra library to use 1? *)
+lemma pow_cong: "(x mod m) (^) n = x^n mod m"
+  apply (insert m_gt_one)
+  apply (induct n)
+  apply (auto simp add: nat_pow_def one_cong One_nat_def)
+  apply (subst mult_commute)
+  apply (rule mult_cong)
+done
+
+lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
+  apply (rule sym)
+  apply (rule sum_zero_eq_neg)
+  apply auto
+  apply (subst add_cong)
+  apply (subst zero_cong)
+  apply auto
+done
+
+lemma (in residues) prod_cong: 
+  "finite A \<Longrightarrow> (\<Otimes> i:A. (f i) mod m) = (PROD i:A. f i) mod m"
+  apply (induct set: finite)
+  apply (auto simp add: one_cong) 
+  apply (subst finprod_insert)
+  apply (auto intro!: funcsetI mult_cong)
+done
+
+lemma (in residues) sum_cong:
+  "finite A \<Longrightarrow> (\<Oplus> i:A. (f i) mod m) = (SUM i: A. f i) mod m"
+  apply (induct set: finite)
+  apply (auto simp add: zero_cong) 
+  apply (subst finsum_insert)
+  apply (auto intro!: funcsetI add_cong)
+done
+
+lemma mod_in_res_units [simp]: "1 < m \<Longrightarrow> coprime a m \<Longrightarrow> 
+    a mod m : Units R"
+  apply (subst res_units_eq, auto)
+  apply (insert pos_mod_sign [of m a])
+  apply (subgoal_tac "a mod m ~= 0")
+  apply arith
+  apply auto
+  apply (subst (asm) int_gcd_commute)
+  apply (subst (asm) int_gcd_mult)
+  apply auto
+  apply (subst (asm) int_gcd_red)
+  apply (subst int_gcd_commute, assumption)
+done
+
+lemma res_eq_to_cong: "((a mod m) = (b mod m)) = [a = b] (mod (m::int))" 
+  unfolding cong_int_def by auto
+
+(* Simplifying with these will translate a ring equation in R to a 
+   congruence. *)
+
+lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
+    prod_cong sum_cong neg_cong res_eq_to_cong
+
+(* Other useful facts about the residue ring *)
+
+lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
+  apply (simp add: res_one_eq res_neg_eq)
+  apply (insert m_gt_one)
+  apply (subgoal_tac "~(m > 2)")
+  apply arith
+  apply (rule notI)
+  apply (subgoal_tac "-1 mod m = m - 1")
+  apply force
+  apply (subst mod_add_self2 [symmetric])
+  apply (subst mod_pos_pos_trivial)
+  apply auto
+done
+
+end
+
+
+(* prime residues *)
+
+locale residues_prime =
+  fixes p :: int and R (structure)
+  assumes p_prime [intro]: "prime p"
+  defines "R == residue_ring p"
+
+sublocale residues_prime < residues p
+  apply (unfold R_def residues_def)
+  using p_prime apply auto
+done
+
+context residues_prime begin
+
+lemma is_field: "field R"
+  apply (rule cring.field_intro2)
+  apply (rule cring)
+  apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq
+    res_units_eq)
+  apply (rule classical)
+  apply (erule notE)
+  apply (subst int_gcd_commute)
+  apply (rule int_prime_imp_coprime)
+  apply (rule p_prime)
+  apply (rule notI)
+  apply (frule zdvd_imp_le)
+  apply auto
+done
+
+lemma res_prime_units_eq: "Units R = {1..p - 1}"
+  apply (subst res_units_eq)
+  apply auto
+  apply (subst int_gcd_commute)
+  apply (rule int_prime_imp_coprime)
+  apply (rule p_prime)
+  apply (rule zdvd_not_zless)
+  apply auto
+done
+
+end
+
+sublocale residues_prime < field
+  by (rule is_field)
+
+
+(*
+  Test cases: Euler's theorem and Wilson's theorem.
+*)
+
+
+subsection{* Euler's theorem *}
+
+(* the definition of the phi function *)
+
+constdefs
+  phi :: "int => nat"
+  "phi m == card({ x. 0 < x & x < m & gcd x m = 1})" 
+
+lemma phi_zero [simp]: "phi 0 = 0"
+  apply (subst phi_def)
+(* Auto hangs here. Once again, where is the simplification rule 
+   1 == Suc 0 coming from? *)
+  apply (auto simp add: card_eq_0_iff)
+(* Add card_eq_0_iff as a simp rule? delete card_empty_imp? *)
+done
+
+lemma phi_one [simp]: "phi 1 = 0"
+  apply (auto simp add: phi_def card_eq_0_iff)
+done
+
+lemma (in residues) phi_eq: "phi m = card(Units R)"
+  by (simp add: phi_def res_units_eq)
+
+lemma (in residues) euler_theorem1: 
+  assumes a: "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof -
+  from a m_gt_one have [simp]: "a mod m : Units R"
+    by (intro mod_in_res_units)
+  from phi_eq have "(a mod m) (^) (phi m) = (a mod m) (^) (card (Units R))"
+    by simp
+  also have "\<dots> = \<one>" 
+    by (intro units_power_order_eq_one, auto)
+  finally show ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+(* In fact, there is a two line proof!
+
+lemma (in residues) euler_theorem1: 
+  assumes a: "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof -
+  have "(a mod m) (^) (phi m) = \<one>"
+    by (simp add: phi_eq units_power_order_eq_one a m_gt_one)
+  thus ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+*)
+
+(* outside the locale, we can relax the restriction m > 1 *)
+
+lemma euler_theorem:
+  assumes "m >= 0" and "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof (cases)
+  assume "m = 0 | m = 1"
+  thus ?thesis by auto
+next
+  assume "~(m = 0 | m = 1)"
+  with prems show ?thesis
+    by (intro residues.euler_theorem1, unfold residues_def, auto)
+qed
+
+lemma (in residues_prime) phi_prime: "phi p = (nat p - 1)"
+  apply (subst phi_eq)
+  apply (subst res_prime_units_eq)
+  apply auto
+done
+
+lemma phi_prime: "prime p \<Longrightarrow> phi p = (nat p - 1)"
+  apply (rule residues_prime.phi_prime)
+  apply (erule residues_prime.intro)
+done
+
+lemma fermat_theorem:
+  assumes "prime p" and "~ (p dvd a)"
+  shows "[a^(nat p - 1) = 1] (mod p)"
+proof -
+  from prems have "[a^phi p = 1] (mod p)"
+    apply (intro euler_theorem)
+    (* auto should get this next part. matching across
+       substitutions is needed. *)
+    apply (frule int_prime_gt_1, arith)
+    apply (subst int_gcd_commute, erule int_prime_imp_coprime, assumption)
+    done
+  also have "phi p = nat p - 1"
+    by (rule phi_prime, rule prems)
+  finally show ?thesis .
+qed
+
+
+subsection {* Wilson's theorem *}
+
+lemma (in field) inv_pair_lemma: "x : Units R \<Longrightarrow> y : Units R \<Longrightarrow> 
+  {x, inv x} ~= {y, inv y} \<Longrightarrow> {x, inv x} Int {y, inv y} = {}" 
+  apply auto
+  apply (erule notE)
+  apply (erule inv_eq_imp_eq)
+  apply auto
+  apply (erule notE)
+  apply (erule inv_eq_imp_eq)
+  apply auto
+done
+
+lemma (in residues_prime) wilson_theorem1:
+  assumes a: "p > 2"
+  shows "[fact (p - 1) = - 1] (mod p)"
+proof -
+  let ?InversePairs = "{ {x, inv x} | x. x : Units R - {\<one>, \<ominus> \<one>}}" 
+  have "Units R = {\<one>, \<ominus> \<one>} Un (Union ?InversePairs)"
+    by auto
+  hence "(\<Otimes>i: Units R. i) = 
+    (\<Otimes>i: {\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i: Union ?InversePairs. i)"
+    apply (elim ssubst) back back
+    apply (subst finprod_Un_disjoint)
+    apply (auto intro!: funcsetI)
+    apply (drule sym, subst (asm) inv_eq_one_eq)
+    apply auto
+    apply (drule sym, subst (asm) inv_eq_neg_one_eq)
+    apply auto
+    done
+  also have "(\<Otimes>i: {\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
+    apply (subst finprod_insert)
+    apply auto
+    apply (frule one_eq_neg_one)
+    apply (insert a, force)
+    apply (auto intro!: funcsetI)
+    done
+  also have "(\<Otimes>i:(Union ?InversePairs). i) = 
+      (\<Otimes> A: ?InversePairs. (\<Otimes> y:A. y))"
+    apply (subst finprod_Union_disjoint)
+    apply force
+    apply force
+    apply clarify
+    apply (rule inv_pair_lemma)
+    apply auto
+    done
+  also have "\<dots> = \<one>"
+    apply (rule finprod_one)
+    apply auto
+    apply (subst finprod_insert)
+    apply auto
+    apply (frule inv_eq_self)
+    apply (auto intro!: funcsetI)
+    done
+  finally have "(\<Otimes>i: Units R. i) = \<ominus> \<one>"
+    by simp
+  also have "(\<Otimes>i: Units R. i) = (\<Otimes>i: Units R. i mod p)"
+    apply (rule finprod_cong')
+    apply (auto intro!: funcsetI)
+    apply (subst (asm) res_prime_units_eq)
+    apply auto
+    done
+  also have "\<dots> = (PROD i: Units R. i) mod p"
+    apply (rule prod_cong)
+    apply auto
+    done
+  also have "\<dots> = fact (p - 1) mod p"
+    apply (subst int_fact_altdef)
+    apply (insert prems, force)
+    apply (subst res_prime_units_eq, rule refl)
+    done
+  finally have "fact (p - 1) mod p = \<ominus> \<one>".
+  thus ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+lemma wilson_theorem: "prime (p::int) \<Longrightarrow> [fact (p - 1) = - 1] (mod p)"
+  apply (frule int_prime_gt_1)
+  apply (case_tac "p = 2")
+  apply (subst int_fact_altdef, simp)
+  apply (subst cong_int_def)
+  apply simp
+  apply (rule residues_prime.wilson_theorem1)
+  apply (rule residues_prime.intro)
+  apply auto
+done
+
+
+end