--- a/src/HOL/Probability/Lebesgue_Measure.thy Fri Jan 14 15:56:42 2011 +0100
+++ b/src/HOL/Probability/Lebesgue_Measure.thy Fri Jan 14 15:59:49 2011 +0100
@@ -626,11 +626,38 @@
qed
qed
+lemma lebesgue_positive_integral_eq_borel:
+ "f \<in> borel_measurable borel \<Longrightarrow> lebesgue.positive_integral f = borel.positive_integral f "
+ by (auto intro!: lebesgue.positive_integral_subalgebra[symmetric]) default
+
+lemma lebesgue_integral_eq_borel:
+ assumes "f \<in> borel_measurable borel"
+ shows "lebesgue.integrable f = borel.integrable f" (is ?P)
+ and "lebesgue.integral f = borel.integral f" (is ?I)
+proof -
+ have *: "sigma_algebra borel" by default
+ have "sets borel \<subseteq> sets lebesgue" by auto
+ from lebesgue.integral_subalgebra[OF assms this _ *]
+ show ?P ?I by auto
+qed
+
+lemma borel_integral_has_integral:
+ fixes f::"'a::ordered_euclidean_space => real"
+ assumes f:"borel.integrable f"
+ shows "(f has_integral (borel.integral f)) UNIV"
+proof -
+ have borel: "f \<in> borel_measurable borel"
+ using f unfolding borel.integrable_def by auto
+ from f show ?thesis
+ using lebesgue_integral_has_integral[of f]
+ unfolding lebesgue_integral_eq_borel[OF borel] by simp
+qed
+
lemma continuous_on_imp_borel_measurable:
fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"
assumes "continuous_on UNIV f"
- shows "f \<in> borel_measurable lebesgue"
- apply(rule lebesgue.borel_measurableI)
+ shows "f \<in> borel_measurable borel"
+ apply(rule borel.borel_measurableI)
using continuous_open_preimage[OF assms] unfolding vimage_def by auto
lemma (in measure_space) integral_monotone_convergence_pos':