src/ZF/AC.thy
changeset 46953 2b6e55924af3
parent 46820 c656222c4dc1
child 58871 c399ae4b836f
--- a/src/ZF/AC.thy	Thu Mar 15 15:54:22 2012 +0000
+++ b/src/ZF/AC.thy	Thu Mar 15 16:35:02 2012 +0000
@@ -9,7 +9,7 @@
 
 text{*This definition comes from Halmos (1960), page 59.*}
 axiomatization where
-  AC: "[| a: A;  !!x. x:A ==> (\<exists>y. y:B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"
+  AC: "[| a \<in> A;  !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"
 
 (*The same as AC, but no premise @{term"a \<in> A"}*)
 lemma AC_Pi: "[| !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"