src/ZF/WF.thy
changeset 1478 2b8c2a7547ab
parent 1401 0c439768f45c
child 2469 b50b8c0eec01
--- a/src/ZF/WF.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/WF.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/wf.thy
+(*  Title:      ZF/wf.thy
     ID:         $Id$
-    Author: 	Tobias Nipkow and Lawrence C Paulson
+    Author:     Tobias Nipkow and Lawrence C Paulson
     Copyright   1994  University of Cambridge
 
 Well-founded Recursion
@@ -9,26 +9,26 @@
 WF = Trancl + "mono" + "equalities" +
 consts
   wf           :: i=>o
-  wf_on        :: [i,i]=>o			("wf[_]'(_')")
+  wf_on        :: [i,i]=>o                      ("wf[_]'(_')")
 
   wftrec,wfrec :: [i, i, [i,i]=>i] =>i
-  wfrec_on     :: [i, i, i, [i,i]=>i] =>i	("wfrec[_]'(_,_,_')")
+  wfrec_on     :: [i, i, i, [i,i]=>i] =>i       ("wfrec[_]'(_,_,_')")
   is_recfun    :: [i, i, [i,i]=>i, i] =>o
   the_recfun   :: [i, i, [i,i]=>i] =>i
 
 defs
   (*r is a well-founded relation*)
-  wf_def	 "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
+  wf_def         "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
 
   (*r is well-founded relation over A*)
   wf_on_def      "wf_on(A,r) == wf(r Int A*A)"
 
   is_recfun_def  "is_recfun(r,a,H,f) == 
-   			(f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
+                        (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
 
   the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
 
-  wftrec_def  	 "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
+  wftrec_def     "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
 
   (*public version.  Does not require r to be transitive*)
   wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"