src/HOL/Nonstandard_Analysis/CStar.thy
changeset 64604 2bf8cfc98c4d
parent 62479 716336f19aa9
--- a/src/HOL/Nonstandard_Analysis/CStar.thy	Sun Dec 18 22:14:53 2016 +0100
+++ b/src/HOL/Nonstandard_Analysis/CStar.thy	Sun Dec 18 23:43:50 2016 +0100
@@ -3,37 +3,36 @@
     Copyright:  2001 University of Edinburgh
 *)
 
-section\<open>Star-transforms in NSA, Extending Sets of Complex Numbers
-      and Complex Functions\<close>
+section \<open>Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions\<close>
 
 theory CStar
-imports NSCA
+  imports NSCA
 begin
 
-subsection\<open>Properties of the *-Transform Applied to Sets of Reals\<close>
+subsection \<open>Properties of the \<open>*\<close>-Transform Applied to Sets of Reals\<close>
 
-lemma STARC_hcomplex_of_complex_Int:
-     "*s* X Int SComplex = hcomplex_of_complex ` X"
-by (auto simp add: Standard_def)
+lemma STARC_hcomplex_of_complex_Int: "*s* X \<inter> SComplex = hcomplex_of_complex ` X"
+  by (auto simp: Standard_def)
 
-lemma lemma_not_hcomplexA:
-     "x \<notin> hcomplex_of_complex ` A ==> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
-by auto
+lemma lemma_not_hcomplexA: "x \<notin> hcomplex_of_complex ` A \<Longrightarrow> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
+  by auto
+
 
-subsection\<open>Theorems about Nonstandard Extensions of Functions\<close>
+subsection \<open>Theorems about Nonstandard Extensions of Functions\<close>
 
-lemma starfunC_hcpow: "!!Z. ( *f* (%z. z ^ n)) Z = Z pow hypnat_of_nat n"
-by transfer (rule refl)
+lemma starfunC_hcpow: "\<And>Z. ( *f* (\<lambda>z. z ^ n)) Z = Z pow hypnat_of_nat n"
+  by transfer (rule refl)
 
 lemma starfunCR_cmod: "*f* cmod = hcmod"
-by transfer (rule refl)
+  by transfer (rule refl)
 
-subsection\<open>Internal Functions - Some Redundancy With *f* Now\<close>
+
+subsection \<open>Internal Functions - Some Redundancy With \<open>*f*\<close> Now\<close>
 
 (** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
 (*
 lemma starfun_n_diff:
-   "( *fn* f) z - ( *fn* g) z = ( *fn* (%i x. f i x - g i x)) z"
+   "( *fn* f) z - ( *fn* g) z = ( *fn* (\<lambda>i x. f i x - g i x)) z"
 apply (cases z)
 apply (simp add: starfun_n star_n_diff)
 done
@@ -41,19 +40,17 @@
 (** composition: ( *fn) o ( *gn) = *(fn o gn) **)
 
 lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
-by transfer (rule refl)
+  by transfer (rule refl)
 
 lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
-by transfer (rule refl)
+  by transfer (rule refl)
 
 lemma starfunC_eq_Re_Im_iff:
-    "(( *f* f) x = z) = ((( *f* (%x. Re(f x))) x = hRe (z)) &
-                          (( *f* (%x. Im(f x))) x = hIm (z)))"
-by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
+  "( *f* f) x = z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x = hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x = hIm z"
+  by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
 
 lemma starfunC_approx_Re_Im_iff:
-    "(( *f* f) x \<approx> z) = ((( *f* (%x. Re(f x))) x \<approx> hRe (z)) &
-                            (( *f* (%x. Im(f x))) x \<approx> hIm (z)))"
-by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
+  "( *f* f) x \<approx> z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x \<approx> hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x \<approx> hIm z"
+  by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
 
 end