--- a/src/HOL/Algebra/QuotRing.thy Tue Jul 15 16:02:10 2008 +0200
+++ b/src/HOL/Algebra/QuotRing.thy Tue Jul 15 16:50:09 2008 +0200
@@ -155,27 +155,32 @@
text {* The quotient of a cring is also commutative *}
lemma (in ideal) quotient_is_cring:
- includes cring
+ assumes "cring R"
shows "cring (R Quot I)"
-apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
+proof -
+ interpret cring [R] by fact
+ show ?thesis apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
apply (rule quotient_is_ring)
apply (rule ring.axioms[OF quotient_is_ring])
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
apply clarify
apply (simp add: rcoset_mult_add m_comm)
done
+qed
text {* Cosets as a ring homomorphism on crings *}
lemma (in ideal) rcos_ring_hom_cring:
- includes cring
+ assumes "cring R"
shows "ring_hom_cring R (R Quot I) (op +> I)"
-apply (rule ring_hom_cringI)
+proof -
+ interpret cring [R] by fact
+ show ?thesis apply (rule ring_hom_cringI)
apply (rule rcos_ring_hom_ring)
apply (rule R.is_cring)
apply (rule quotient_is_cring)
apply (rule R.is_cring)
done
-
+qed
subsection {* Factorization over Prime Ideals *}
@@ -236,9 +241,11 @@
The proof follows ``W. Adkins, S. Weintraub: Algebra --
An Approach via Module Theory'' *}
lemma (in maximalideal) quotient_is_field:
- includes cring
+ assumes "cring R"
shows "field (R Quot I)"
-apply (intro cring.cring_fieldI2)
+proof -
+ interpret cring [R] by fact
+ show ?thesis apply (intro cring.cring_fieldI2)
apply (rule quotient_is_cring, rule is_cring)
defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarsimp)
@@ -338,5 +345,6 @@
from rcarr and this[symmetric]
show "\<exists>r\<in>carrier R. I +> a \<otimes> r = I +> \<one>" by fast
qed
+qed
end