src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
changeset 36590 2cdaae32b682
parent 36586 4fa71a69d5b2
child 36623 d26348b667f2
child 36627 39b2516a1970
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed Apr 28 23:08:31 2010 -0700
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Thu Apr 29 07:22:01 2010 -0700
@@ -2205,14 +2205,6 @@
 
 subsection {* Use this to derive general bound property of convex function. *}
 
-lemma forall_of_pastecart:
-  "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
-  apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto
-
-lemma forall_of_pastecart':
-  "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
-  apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto
-
 (* TODO: move *)
 lemma fst_setsum: "fst (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. fst (f x))"
 by (cases "finite A", induct set: finite, simp_all)