--- a/src/HOL/Import/HOL4/Compatibility.thy Sun Apr 01 14:50:47 2012 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,504 +0,0 @@
-(* Title: HOL/Import/HOL4/Compatibility.thy
- Author: Sebastian Skalberg (TU Muenchen)
-*)
-
-theory Compatibility
-imports
- Complex_Main
- "~~/src/HOL/Old_Number_Theory/Primes"
- "~~/src/HOL/Library/ContNotDenum"
- "~~/src/HOL/Import/Importer"
-begin
-
-abbreviation (input) mem (infixl "mem" 55) where "x mem xs \<equiv> List.member xs x"
-no_notation differentiable (infixl "differentiable" 60)
-no_notation sums (infixr "sums" 80)
-
-lemma EXISTS_UNIQUE_DEF: "(Ex1 P) = (Ex P & (ALL x y. P x & P y --> (x = y)))"
- by auto
-
-lemma COND_DEF:"(If b t f) = (@x. ((b = True) --> (x = t)) & ((b = False) --> (x = f)))"
- by auto
-
-definition LET :: "['a \<Rightarrow> 'b,'a] \<Rightarrow> 'b" where
- "LET f s == f s"
-
-lemma [import_rew]: "LET f s = Let s f"
- by (simp add: LET_def Let_def)
-
-lemmas [import_rew] = ONE_ONE_rew
-
-lemma bool_case_DEF: "(bool_case x y b) = (if b then x else y)"
- by simp
-
-lemma INR_INL_11: "(ALL y x. (Inl x = Inl y) = (x = y)) & (ALL y x. (Inr x = Inr y) = (x = y))"
- by safe
-
-(*lemma INL_neq_INR: "ALL v1 v2. Sum_Type.Inr v2 ~= Sum_Type.Inl v1"
- by simp*)
-
-primrec ISL :: "'a + 'b => bool" where
- "ISL (Inl x) = True"
-| "ISL (Inr x) = False"
-
-primrec ISR :: "'a + 'b => bool" where
- "ISR (Inl x) = False"
-| "ISR (Inr x) = True"
-
-lemma ISL: "(ALL x. ISL (Inl x)) & (ALL y. ~ISL (Inr y))"
- by simp
-
-lemma ISR: "(ALL x. ISR (Inr x)) & (ALL y. ~ISR (Inl y))"
- by simp
-
-primrec OUTL :: "'a + 'b => 'a" where
- "OUTL (Inl x) = x"
-
-primrec OUTR :: "'a + 'b => 'b" where
- "OUTR (Inr x) = x"
-
-lemma OUTL: "OUTL (Inl x) = x"
- by simp
-
-lemma OUTR: "OUTR (Inr x) = x"
- by simp
-
-lemma sum_axiom: "EX! h. h o Inl = f & h o Inr = g"
- apply (intro allI ex1I[of _ "sum_case f g"] conjI)
- apply (simp_all add: o_def fun_eq_iff)
- apply (rule)
- apply (induct_tac x)
- apply simp_all
- done
-
-lemma sum_case_def: "(ALL f g x. sum_case f g (Inl x) = f x) & (ALL f g y. sum_case f g (Inr y) = g y)"
- by simp
-
-lemma one: "ALL v. v = ()"
- by simp
-
-lemma option_case_def: "(!u f. option_case u f None = u) & (!u f x. option_case u f (Some x) = f x)"
- by simp
-
-lemma OPTION_MAP_DEF: "(!f x. Option.map f (Some x) = Some (f x)) & (!f. Option.map f None = None)"
- by simp
-
-primrec IS_SOME :: "'a option => bool" where
- "IS_SOME (Some x) = True"
-| "IS_SOME None = False"
-
-primrec IS_NONE :: "'a option => bool" where
- "IS_NONE (Some x) = False"
-| "IS_NONE None = True"
-
-lemma IS_NONE_DEF: "(!x. IS_NONE (Some x) = False) & (IS_NONE None = True)"
- by simp
-
-lemma IS_SOME_DEF: "(!x. IS_SOME (Some x) = True) & (IS_SOME None = False)"
- by simp
-
-primrec OPTION_JOIN :: "'a option option => 'a option" where
- "OPTION_JOIN None = None"
-| "OPTION_JOIN (Some x) = x"
-
-lemma OPTION_JOIN_DEF: "(OPTION_JOIN None = None) & (ALL x. OPTION_JOIN (Some x) = x)"
- by simp
-
-lemma PAIR: "(fst x,snd x) = x"
- by simp
-
-lemma PAIR_MAP: "map_pair f g p = (f (fst p),g (snd p))"
- by (simp add: map_pair_def split_def)
-
-lemma pair_case_def: "split = split"
- ..
-
-lemma LESS_OR_EQ: "m <= (n::nat) = (m < n | m = n)"
- by auto
-
-definition nat_gt :: "nat => nat => bool" where
- "nat_gt == %m n. n < m"
-
-definition nat_ge :: "nat => nat => bool" where
- "nat_ge == %m n. nat_gt m n | m = n"
-
-lemma [import_rew]: "nat_gt m n = (n < m)"
- by (simp add: nat_gt_def)
-
-lemma [import_rew]: "nat_ge m n = (n <= m)"
- by (auto simp add: nat_ge_def nat_gt_def)
-
-lemma GREATER_DEF: "ALL m n. (n < m) = (n < m)"
- by simp
-
-lemma GREATER_OR_EQ: "ALL m n. n <= (m::nat) = (n < m | m = n)"
- by auto
-
-lemma LESS_DEF: "m < n = (? P. (!n. P (Suc n) --> P n) & P m & ~P n)"
-proof safe
- assume 1: "m < n"
- def P == "%n. n <= m"
- have "(!n. P (Suc n) \<longrightarrow> P n) & P m & ~P n"
- proof (auto simp add: P_def)
- assume "n <= m"
- with 1
- show False
- by auto
- qed
- thus "? P. (!n. P (Suc n) \<longrightarrow> P n) & P m & ~P n"
- by auto
-next
- fix P
- assume alln: "!n. P (Suc n) \<longrightarrow> P n"
- assume pm: "P m"
- assume npn: "~P n"
- have "!k q. q + k = m \<longrightarrow> P q"
- proof
- fix k
- show "!q. q + k = m \<longrightarrow> P q"
- proof (induct k,simp_all)
- show "P m" by fact
- next
- fix k
- assume ind: "!q. q + k = m \<longrightarrow> P q"
- show "!q. Suc (q + k) = m \<longrightarrow> P q"
- proof (rule+)
- fix q
- assume "Suc (q + k) = m"
- hence "(Suc q) + k = m"
- by simp
- with ind
- have psq: "P (Suc q)"
- by simp
- from alln
- have "P (Suc q) --> P q"
- ..
- with psq
- show "P q"
- by simp
- qed
- qed
- qed
- hence "!q. q + (m - n) = m \<longrightarrow> P q"
- ..
- hence hehe: "n + (m - n) = m \<longrightarrow> P n"
- ..
- show "m < n"
- proof (rule classical)
- assume "~(m<n)"
- hence "n <= m"
- by simp
- with hehe
- have "P n"
- by simp
- with npn
- show "m < n"
- ..
- qed
-qed
-
-definition FUNPOW :: "('a => 'a) => nat => 'a => 'a" where
- "FUNPOW f n == f ^^ n"
-
-lemma FUNPOW: "(ALL f x. (f ^^ 0) x = x) &
- (ALL f n x. (f ^^ Suc n) x = (f ^^ n) (f x))"
- by (simp add: funpow_swap1)
-
-lemma [import_rew]: "FUNPOW f n = f ^^ n"
- by (simp add: FUNPOW_def)
-
-lemma ADD: "(!n. (0::nat) + n = n) & (!m n. Suc m + n = Suc (m + n))"
- by simp
-
-lemma MULT: "(!n. (0::nat) * n = 0) & (!m n. Suc m * n = m * n + n)"
- by simp
-
-lemma SUB: "(!m. (0::nat) - m = 0) & (!m n. (Suc m) - n = (if m < n then 0 else Suc (m - n)))"
- by (simp) arith
-
-lemma MAX_DEF: "max (m::nat) n = (if m < n then n else m)"
- by (simp add: max_def)
-
-lemma MIN_DEF: "min (m::nat) n = (if m < n then m else n)"
- by (simp add: min_def)
-
-lemma DIVISION: "(0::nat) < n --> (!k. (k = k div n * n + k mod n) & k mod n < n)"
- by simp
-
-definition ALT_ZERO :: nat where
- "ALT_ZERO == 0"
-
-definition NUMERAL_BIT1 :: "nat \<Rightarrow> nat" where
- "NUMERAL_BIT1 n == n + (n + Suc 0)"
-
-definition NUMERAL_BIT2 :: "nat \<Rightarrow> nat" where
- "NUMERAL_BIT2 n == n + (n + Suc (Suc 0))"
-
-definition NUMERAL :: "nat \<Rightarrow> nat" where
- "NUMERAL x == x"
-
-lemma [import_rew]: "NUMERAL ALT_ZERO = 0"
- by (simp add: ALT_ZERO_def NUMERAL_def)
-
-lemma [import_rew]: "NUMERAL (NUMERAL_BIT1 ALT_ZERO) = 1"
- by (simp add: ALT_ZERO_def NUMERAL_BIT1_def NUMERAL_def)
-
-lemma [import_rew]: "NUMERAL (NUMERAL_BIT2 ALT_ZERO) = 2"
- by (simp add: ALT_ZERO_def NUMERAL_BIT2_def NUMERAL_def)
-
-lemma EXP: "(!m. m ^ 0 = (1::nat)) & (!m n. m ^ Suc n = m * (m::nat) ^ n)"
- by auto
-
-lemma num_case_def: "(!b f. nat_case b f 0 = b) & (!b f n. nat_case b f (Suc n) = f n)"
- by simp
-
-lemma divides_def: "(a::nat) dvd b = (? q. b = q * a)"
- by (auto simp add: dvd_def)
-
-lemma list_case_def: "(!v f. list_case v f [] = v) & (!v f a0 a1. list_case v f (a0#a1) = f a0 a1)"
- by simp
-
-primrec list_size :: "('a \<Rightarrow> nat) \<Rightarrow> 'a list \<Rightarrow> nat" where
- "list_size f [] = 0"
-| "list_size f (a0#a1) = 1 + (f a0 + list_size f a1)"
-
-lemma list_size_def': "(!f. list_size f [] = 0) &
- (!f a0 a1. list_size f (a0#a1) = 1 + (f a0 + list_size f a1))"
- by simp
-
-lemma list_case_cong: "! M M' v f. M = M' & (M' = [] \<longrightarrow> v = v') &
- (!a0 a1. (M' = a0#a1) \<longrightarrow> (f a0 a1 = f' a0 a1)) -->
- (list_case v f M = list_case v' f' M')"
-proof clarify
- fix M M' v f
- assume 1: "M' = [] \<longrightarrow> v = v'"
- and 2: "!a0 a1. M' = a0 # a1 \<longrightarrow> f a0 a1 = f' a0 a1"
- show "list_case v f M' = list_case v' f' M'"
- proof (rule List.list.case_cong)
- show "M' = M'"
- ..
- next
- assume "M' = []"
- with 1 2
- show "v = v'"
- by auto
- next
- fix a0 a1
- assume "M' = a0 # a1"
- with 1 2
- show "f a0 a1 = f' a0 a1"
- by auto
- qed
-qed
-
-lemma list_Axiom: "ALL f0 f1. EX fn. (fn [] = f0) & (ALL a0 a1. fn (a0#a1) = f1 a0 a1 (fn a1))"
-proof safe
- fix f0 f1
- def fn == "list_rec f0 f1"
- have "fn [] = f0 & (ALL a0 a1. fn (a0 # a1) = f1 a0 a1 (fn a1))"
- by (simp add: fn_def)
- thus "EX fn. fn [] = f0 & (ALL a0 a1. fn (a0 # a1) = f1 a0 a1 (fn a1))"
- by auto
-qed
-
-lemma list_Axiom_old: "EX! fn. (fn [] = x) & (ALL h t. fn (h#t) = f (fn t) h t)"
-proof safe
- def fn == "list_rec x (%h t r. f r h t)"
- have "fn [] = x & (ALL h t. fn (h # t) = f (fn t) h t)"
- by (simp add: fn_def)
- thus "EX fn. fn [] = x & (ALL h t. fn (h # t) = f (fn t) h t)"
- by auto
-next
- fix fn1 fn2
- assume 1: "ALL h t. fn1 (h # t) = f (fn1 t) h t"
- assume 2: "ALL h t. fn2 (h # t) = f (fn2 t) h t"
- assume 3: "fn2 [] = fn1 []"
- show "fn1 = fn2"
- proof
- fix xs
- show "fn1 xs = fn2 xs"
- by (induct xs) (simp_all add: 1 2 3)
- qed
-qed
-
-lemma NULL_DEF: "(List.null [] = True) & (!h t. List.null (h # t) = False)"
- by (simp add: null_def)
-
-definition sum :: "nat list \<Rightarrow> nat" where
- "sum l == foldr (op +) l 0"
-
-lemma SUM: "(sum [] = 0) & (!h t. sum (h#t) = h + sum t)"
- by (simp add: sum_def)
-
-lemma APPEND: "(!l. [] @ l = l) & (!l1 l2 h. (h#l1) @ l2 = h# l1 @ l2)"
- by simp
-
-lemma FLAT: "(concat [] = []) & (!h t. concat (h#t) = h @ (concat t))"
- by simp
-
-lemma LENGTH: "(length [] = 0) & (!h t. length (h#t) = Suc (length t))"
- by simp
-
-lemma MAP: "(!f. map f [] = []) & (!f h t. map f (h#t) = f h#map f t)"
- by simp
-
-lemma MEM: "(!x. List.member [] x = False) & (!x h t. List.member (h#t) x = ((x = h) | List.member t x))"
- by (simp add: member_def)
-
-lemma FILTER: "(!P. filter P [] = []) & (!P h t.
- filter P (h#t) = (if P h then h#filter P t else filter P t))"
- by simp
-
-lemma REPLICATE: "(ALL x. replicate 0 x = []) &
- (ALL n x. replicate (Suc n) x = x # replicate n x)"
- by simp
-
-definition FOLDR :: "[['a,'b]\<Rightarrow>'b,'b,'a list] \<Rightarrow> 'b" where
- "FOLDR f e l == foldr f l e"
-
-lemma [import_rew]: "FOLDR f e l = foldr f l e"
- by (simp add: FOLDR_def)
-
-lemma FOLDR: "(!f e. foldr f [] e = e) & (!f e x l. foldr f (x#l) e = f x (foldr f l e))"
- by simp
-
-lemma FOLDL: "(!f e. foldl f e [] = e) & (!f e x l. foldl f e (x#l) = foldl f (f e x) l)"
- by simp
-
-lemma EVERY_DEF: "(!P. list_all P [] = True) & (!P h t. list_all P (h#t) = (P h & list_all P t))"
- by simp
-
-lemma list_exists_DEF: "(!P. list_ex P [] = False) & (!P h t. list_ex P (h#t) = (P h | list_ex P t))"
- by simp
-
-primrec map2 :: "[['a,'b]\<Rightarrow>'c,'a list,'b list] \<Rightarrow> 'c list" where
- map2_Nil: "map2 f [] l2 = []"
-| map2_Cons: "map2 f (x#xs) l2 = f x (hd l2) # map2 f xs (tl l2)"
-
-lemma MAP2: "(!f. map2 f [] [] = []) & (!f h1 t1 h2 t2. map2 f (h1#t1) (h2#t2) = f h1 h2#map2 f t1 t2)"
- by simp
-
-lemma list_INDUCT: "\<lbrakk> P [] ; !t. P t \<longrightarrow> (!h. P (h#t)) \<rbrakk> \<Longrightarrow> !l. P l"
-proof
- fix l
- assume "P []"
- assume allt: "!t. P t \<longrightarrow> (!h. P (h # t))"
- show "P l"
- proof (induct l)
- show "P []" by fact
- next
- fix h t
- assume "P t"
- with allt
- have "!h. P (h # t)"
- by auto
- thus "P (h # t)"
- ..
- qed
-qed
-
-lemma list_CASES: "(l = []) | (? t h. l = h#t)"
- by (induct l,auto)
-
-definition ZIP :: "'a list * 'b list \<Rightarrow> ('a * 'b) list" where
- "ZIP == %(a,b). zip a b"
-
-lemma ZIP: "(zip [] [] = []) &
- (!x1 l1 x2 l2. zip (x1#l1) (x2#l2) = (x1,x2)#zip l1 l2)"
- by simp
-
-lemma [import_rew]: "ZIP (a,b) = zip a b"
- by (simp add: ZIP_def)
-
-primrec unzip :: "('a * 'b) list \<Rightarrow> 'a list * 'b list" where
- unzip_Nil: "unzip [] = ([],[])"
-| unzip_Cons: "unzip (xy#xys) = (let zs = unzip xys in (fst xy # fst zs,snd xy # snd zs))"
-
-lemma UNZIP: "(unzip [] = ([],[])) &
- (!x l. unzip (x#l) = (fst x#fst (unzip l),snd x#snd (unzip l)))"
- by (simp add: Let_def)
-
-lemma REVERSE: "(rev [] = []) & (!h t. rev (h#t) = (rev t) @ [h])"
- by simp
-
-lemma REAL_SUP_ALLPOS: "\<lbrakk> ALL x. P (x::real) \<longrightarrow> 0 < x ; EX x. P x; EX z. ALL x. P x \<longrightarrow> x < z \<rbrakk> \<Longrightarrow> EX s. ALL y. (EX x. P x & y < x) = (y < s)"
-proof safe
- fix x z
- assume allx: "ALL x. P x \<longrightarrow> 0 < x"
- assume px: "P x"
- assume allx': "ALL x. P x \<longrightarrow> x < z"
- have "EX s. ALL y. (EX x : Collect P. y < x) = (y < s)"
- proof (rule posreal_complete)
- from px
- show "EX x. x : Collect P"
- by auto
- next
- from allx'
- show "EX y. ALL x : Collect P. x < y"
- apply simp
- ..
- qed
- thus "EX s. ALL y. (EX x. P x & y < x) = (y < s)"
- by simp
-qed
-
-lemma REAL_10: "~((1::real) = 0)"
- by simp
-
-lemma REAL_ADD_ASSOC: "(x::real) + (y + z) = x + y + z"
- by simp
-
-lemma REAL_MUL_ASSOC: "(x::real) * (y * z) = x * y * z"
- by simp
-
-lemma REAL_ADD_LINV: "-x + x = (0::real)"
- by simp
-
-lemma REAL_MUL_LINV: "x ~= (0::real) ==> inverse x * x = 1"
- by simp
-
-lemma REAL_LT_TOTAL: "((x::real) = y) | x < y | y < x"
- by auto
-
-lemma [import_rew]: "real (0::nat) = 0"
- by simp
-
-lemma [import_rew]: "real (1::nat) = 1"
- by simp
-
-lemma [import_rew]: "real (2::nat) = 2"
- by simp
-
-lemma real_lte: "((x::real) <= y) = (~(y < x))"
- by auto
-
-lemma real_of_num: "((0::real) = 0) & (!n. real (Suc n) = real n + 1)"
- by (simp add: real_of_nat_Suc)
-
-lemma abs: "abs (x::real) = (if 0 <= x then x else -x)"
- by (simp add: abs_if)
-
-lemma pow: "(!x::real. x ^ 0 = 1) & (!x::real. ALL n. x ^ (Suc n) = x * x ^ n)"
- by simp
-
-definition real_gt :: "real => real => bool" where
- "real_gt == %x y. y < x"
-
-lemma [import_rew]: "real_gt x y = (y < x)"
- by (simp add: real_gt_def)
-
-lemma real_gt: "ALL x (y::real). (y < x) = (y < x)"
- by simp
-
-definition real_ge :: "real => real => bool" where
- "real_ge x y == y <= x"
-
-lemma [import_rew]: "real_ge x y = (y <= x)"
- by (simp add: real_ge_def)
-
-lemma real_ge: "ALL x y. (y <= x) = (y <= x)"
- by simp
-
-definition [import_rew]: "list_mem x xs = List.member xs x"
-
-end